Search Results

Now showing 1 - 2 of 2
  • Item
    Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction
    (Cambridge : Soc., 2015) Zhu, Chengzhou; Wen, Dan; Leubner, Susanne; Oschatz, Martin; Liu, Wei; Holzschuh, Matthias; Simon, Frank; Kaskel, Stefan; Eychmüller, Alexander
    A class of novel nickel cobalt oxide hollow nanosponges were synthesized through a sodium borohydride reduction strategy. Due to their porous and hollow nanostructures, and synergetic effects between their components, the optimized nickel cobalt oxide nanosponges exhibited excellent catalytic activity towards oxygen evolution reaction.
  • Item
    Multilayer fabrication of unobtrusive poly(dimethylsiloxane) nanobrush for tunable cell adhesion
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Chae, Soo Sang; Jung, Joo Hyun; Choi, Won Jin; Park, Joung Kyu; Baik, Hong Koo; Jung, Jongjin; Ko, Hyuk Wan
    Precise modulation of polymer brush in its thickness and grafting density can cause unexpected cell behaviors and regulated bioactivities. Herein, a nanoscale poly(dimethylsiloxane) (PDMS) brush was employed to use as a controllable material for cell adhesion. Facile fabrication of ultrathin monolayer PDMS nanobrush on an underlying substrate facilitated regaining cell adhesion through long-range cell attractive forces such as the van der Waals forces. We showed that cell adhesion is diminished by increasing the number of nanobrush layers, causing a gradual decrease of the effectiveness of the long-range force. The result demonstrates that ultrathin PDMS nanobrush can either promote or inhibit cell adhesion, which is required for various biomedical fields such as tissue-engineering, anti-fouling coating, and implantable biomaterials and sensors.