Search Results

Now showing 1 - 5 of 5
  • Item
    Silk Nanoparticle Manufacture in Semi-Batch Format
    (Washington, DC : ACS Publications, 2020) Matthew, Saphia A.L.; Totten, John D.; Phuagkhaopong, Suttinee; Egan, Gemma; Witte, Kimia; Perrie, Yvonne; Seib, F. Philipp
    Silk nanoparticles have demonstrated utility across a range of biomedical applications, especially as drug delivery vehicles. Their fabrication by bottom-up methods such as nanoprecipitation, rather than top-down manufacture, can improve critical nanoparticle quality attributes. Here, we establish a simple semi-batch method using drop-by-drop nanoprecipitation at the lab scale that reduces special-cause variation and improves mixing efficiency. The stirring rate was an important parameter affecting nanoparticle size and yield (400 < 200 < 0 rpm), while the initial dropping height (5.5 vs 7.5 cm) directly affected nanoparticle yield. Varying the nanoparticle standing time in the mother liquor between 0 and 24 h did not significantly affect nanoparticle physicochemical properties, indicating that steric and charge stabilizations result in high-energy barriers for nanoparticle growth. Manufacture across all tested formulations achieved nanoparticles between 104 and 134 nm in size with high β-sheet content, spherical morphology, and stability in aqueous media for over 1 month at 4 °C. This semi-automated drop-by-drop, semi-batch silk desolvation offers an accessible, higher-throughput platform for standardization of parameters that are difficult to control using manual methodologies. © 2020 American Chemical Society.
  • Item
    Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains
    (Washington, DC : ACS Publ., 2019) Mayer, Martin; Potapov, Pavel L.; Pohl, Darius; Steiner, Anja Maria; Schultz, Johannes; Rellinghaus, Bernd; Lubk, Axel; König, Tobias A.F.; Fery, Andreas
    Chains of metallic nanoparticles sustain strongly confined surface plasmons with relatively low dielectric losses. To exploit these properties in applications, such as waveguides, the fabrication of long chains of low disorder and a thorough understanding of the plasmon-mode properties, such as dispersion relations, are indispensable. Here, we use a wrinkled template for directed self-assembly to assemble chains of gold nanoparticles. With this up-scalable method, chain lengths from two particles (140 nm) to 20 particles (1500 nm) and beyond can be fabricated. Electron energy-loss spectroscopy supported by boundary element simulations, finite-difference time-domain, and a simplified dipole coupling model reveal the evolution of a band of plasmonic waveguide modes from degenerated single-particle modes in detail. In striking difference from plasmonic rod-like structures, the plasmon band is confined in excitation energy, which allows light manipulations below the diffraction limit. The non-degenerated surface plasmon modes show suppressed radiative losses for efficient energy propagation over a distance of 1500 nm. © 2019 American Chemical Society.
  • Item
    Straightforward Approach for Preparing Durable Antibacterial ZnO Nanoparticle Coatings on Flexible Substrates
    (Basel : MDPI, 2022) Šutka, Andris; Mežule, Linda; Denisova, Viktorija; Meier-Haack, Jochen; Kulkarni, Akshay; Bitina, Sanda; Smits, Krisjanis; Vihodceva, Svetlana
    Flexible antibacterial materials have gained utmost importance in protection from the distribution of bacteria and viruses due to the exceptional variety of applications. Herein, we demonstrate a readily scalable and rapid single-step approach for producing durable ZnO nanoparticle antibacterial coating on flexible polymer substrates at room temperature. Substrates used are polystyrene, poly(ethylene-co-vinyl acetate) copolymer, poly(methyl methacrylate), polypropylene, high density polyethylene and a commercial acrylate type adhesive tape. The deposition was achieved by a spin-coating process using a slurry of ZnO nanoparticles in toluene. A stable modification layer was obtained when toluene was a solvent for the polymer substrates, namely polystyrene and poly(ethylene-co-vinyl acetate). These coatings show high antibacterial efficiency causing >5 log decrease in the viable counts of Gram-negative bacteria Escherichia. coli and Gram-positive bacteria Staphylococcus aureus in 120 min. Even after tapping these coated surfaces 500 times, the antibacterial properties remained unchanged, showing that the coating obtained by the presented method is very robust. In contrast to the above findings, the coatings are unstable when toluene is not a solvent for the substrate.
  • Item
    Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution
    (Abingdon : Taylor & Francis Group, 2017) Totten, John D.; Wongpinyochit, Thidarat; Seib, F. Philipp
    Silk nanoparticles are expected to improve chemotherapeutic drug targeting to solid tumours by exploiting tumour pathophysiology, modifying the cellular pharmacokinetics of the payload and ultimately resulting in trafficking to lysosomes and triggering drug release. However, experimental proof for lysosomotropic drug delivery by silk nanoparticles in live cells is lacking and the importance of lysosomal pH and enzymes controlling drug release is currently unknown. Here, we demonstrate, in live single human breast cancer cells, the role of the lysosomal environment in determining silk nanoparticle-mediated drug release. MCF-7 human breast cancer cells endocytosed and trafficked drug-loaded native and PEGylated silk nanoparticles (∼100 nm in diameter) to lysosomes, with subsequent drug release from the respective carriers and nuclear translocation within 5 h of dosing. A combination of low pH and enzymatic degradation facilitated drug release from the silk nanoparticles; perturbation of the acidic lysosomal pH and inhibition of serine, cysteine and threonine proteases resulted in a 42% ± 2.2% and 33% ± 3% reduction in nuclear-associated drug accumulation for native and PEGylated silk nanoparticles, respectively. Overall, this study demonstrates the importance of lysosomal activity for anticancer drug release from silk nanoparticles, thereby providing direct evidence for lysosomotropic drug delivery in live cells.
  • Item
    Interaction between immobilized polyelectrolyte complex nanoparticles and human mesenchymal stromal cells
    (Auckland : DOVE Medical Press, 2014) Woltmann, B.; Torger, B.; Müller, M.; Hempel, U.
    Background: Implant loosening or deficient osseointegration is a major problem in patients with systemic bone diseases (eg, osteoporosis). For this reason, the stimulation of the regional cell population by local and sustained drug delivery at the bone/implant interface to induce the formation of a mechanical stable bone is promising. The purpose of this study was to investigate the interaction of polymer-based nanoparticles with human bone marrow-derived cells, considering nanoparticles' composition and surface net charge. Materials and methods: Polyelectrolyte complex nanoparticles (PECNPs) composed of the polycations poly(ethyleneimine) (PEI), poly(L-lysine) (PLL), or (N,N-diethylamino)ethyldextran (DEAE) in combination with the polyanions dextran sulfate (DS) or cellulose sulfate (CS) were prepared. PECNPs' physicochemical properties (size, net charge) were characterized by dynamic light scattering and particle charge detector measurements. Biocompatibility was investigated using human mesenchymal stromal cells (hMSCs) cultured on immobilized PECNP films (5-50 nmol·cm-2) by analysis for metabolic activity of hMSCs in dependence of PECNP surface concentration by MTS (3-[4,5-dimethylthiazol-2-yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H-tetrazolium, inner salt) assay, as well as cell morphology (phase contrast microscopy). Results: PECNPs ranging between ~50 nm and 150 nm were prepared. By varying the ratio of polycations and polyanions, PECNPs with a slightly positive (PEC+NP) or negative (PEC-NP) net charge were obtained. The PECNP composition significantly affected cell morphology and metabolic activity, whereas the net charge had a negligible influence. Therefore, we classified PECNPs into "variant systems" featuring a significant dose dependency of metabolic activity (DEAE/CS, PEI/DS) and "invariant systems" lacking such a dependency (DEAE/DS, PEI/CS). Immunofluorescence imaging of fluorescein isothiocyanate isomer I (FITC)-labeled PECNPs suggested internalization into hMSCs remaining stable for 8 days. Conclusion: Our study demonstrated that PECNP composition affects hMSC behavior. In particular, the PEI/CS system showed biocompatibility in a wide concentration range, representing a suitable system for local drug delivery from PECNP-functionalized bone substitute materials.