Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Bicyclic RGD peptides enhance nerve growth in synthetic PEG-based Anisogels

2021, Vedaraman, Sitara, Bernhagen, Dominik, Haraszti, Tamas, Licht, Christopher, Castro Nava, Arturo, Omidinia Anarkoli, Abdolrahman, Timmerman, Peter, De Laporte, Laura

Nerve regeneration scaffolds often consist of soft hydrogels modified with extracellular matrix (ECM) proteins or fragments, as well as linear and cyclic peptides. One of the commonly used integrin-mediated cell adhesive peptide sequences is Arg-Gly-Asp (RGD). Despite its straightforward coupling mechanisms to artificial extracellular matrix (aECM) constructs, linear RGD peptides suffer from low stability towards degradation and lack integrin selectivity. Cyclization of RGD improves the affinity towards integrin subtypes but lacks selectivity. In this study, a new class of short bicyclic peptides with RGD in a cyclic loop and 'random screened' tri-amino acid peptide sequences in the second loop is investigated as a biochemical cue for cell growth inside three-dimensional (3D) synthetic poly(ethylene glycol) (PEG)-based Anisogels. These peptides impart high integrin affinity and selectivity towards either αvβ3 or α5β1 integrin subunits. Enzymatic conjugation of such bicyclic peptides to the PEG backbone enables the formulation of an aECM hydrogel that supports nerve growth. Furthermore, different proteolytic cleavable moieties are incorporated and compared to promote cell migration and proliferation, resulting in enhanced cell growth with different degradable peptide crosslinkers. Mouse fibroblasts and primary nerve cells from embryonic chick dorsal root ganglions (DRGs) show superior growth in bicyclic RGD peptide conjugated gels selective towards αvβ3 or α5β1, compared to monocyclic or linear RGD peptides, with a slight preference to αvβ3 selective bicyclic peptides in the case of nerve growth. Synthetic Anisogels, modified with bicyclic RGD peptides and containing short aligned, magneto-responsive fibers, show oriented DRG outgrowth parallel to the fibers. This report shows the potential of PEG hydrogels coupled with bicyclic RGD peptides as an aECM model and paves the way for a new class of integrin selective biomolecules for cell growth and nerve regeneration.

Loading...
Thumbnail Image
Item

Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension

2019, Licht, Christopher, Rose, Jonas C., Anarkoli, Abdolrahman Omidinia, Blondel, Delphine, Roccio, Marta, Haraszti, Tamás, Gehlen, David B., Hubbell, Jeffrey A., Lutolf, Matthias P., De Laporte, Laura

An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.

Loading...
Thumbnail Image
Item

Lévy noise improves the electrical activity in a neuron under electromagnetic radiation

2017, Wu, J., Xu, Y., Ma, J.

As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Levy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Levy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Levy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Levy noise intensity are depicted. The increasing of Levy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Levy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Levy noise distribution are detected.