Search Results

Now showing 1 - 3 of 3
  • Item
    Axisymmetric diffusion kurtosis imaging with Rician bias correction: A simulation study
    (New York, NY : Wiley-Liss, 2022) Oeschger, Jan Malte; Tabelow, Karsten; Mohammadi, Siawoosh
    Purpose: To compare the estimation accuracy of axisymmetric diffusion kurtosis imaging (DKI) and standard DKI in combination with Rician bias correction (RBC). Methods: Axisymmetric DKI is more robust against noise-induced variation in the measured signal than standard DKI because of its reduced parameter space. However, its susceptibility to Rician noise bias at low signal-to-noise ratios (SNR) is unknown. Here, we investigate two main questions: first, does RBC improve estimation accuracy of axisymmetric DKI?; second, is estimation accuracy of axisymmetric DKI increased compared to standard DKI? Estimation accuracy was investigated on the five axisymmetric DKI tensor metrics (AxTM): the parallel and perpendicular diffusivity and kurtosis and mean of the kurtosis tensor, using a noise simulation study based on synthetic data of tissues with varying fiber alignment and in-vivo data focusing on white matter. Results: RBC mainly increased accuracy for the parallel AxTM in tissues with highly to moderately aligned fibers. For the perpendicular AxTM, axisymmetric DKI without RBC performed slightly better than with RBC. However, the combination of axisymmetric DKI with RBC was the overall best performing algorithm across all five AxTM in white matter and axisymmetric DKI itself substantially improved accuracy in axisymmetric tissues with low fiber alignment. Conclusion: Combining axisymmetric DKI with RBC facilitates accurate DKI parameter estimation at unprecedented low SNRs ((Formula presented.)) in white matter, possibly making it a valuable tool for neuroscience and clinical research studies where scan time is a limited resource. The tools used here are available in the open-source ACID toolbox for SPM.
  • Item
    Noise enhanced coupling between two oscillators with long-term plasticity
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Lücken, Leonhard; Popovych, Oleksandr V.; Tass, Peter A.; Yanchuk, Serhiy
    Spike time-dependent plasticity is a fundamental adaptation mechanism of the nervous system. It induces structural changes of synaptic connectivity by regulation of coupling strengths between individual cells depending on their spiking behavior. As a biophysical process its functioning is constantly subjected to natural fluctuations. We study theoretically the influence of noise on a microscopic level by considering only two coupled neurons. Adopting a phase description for the neurons we derive a two-dimensional system which describes the averaged dynamics of the coupling strengths. We show that a multistability of several coupling configurations is possible, where some configurations are not found in systems without noise. Intriguingly, it is possible that a strong bidirectional coupling, which is not present in the noise-free situation, can be stabilized by the noise. This means that increased noise, which is normally expected to desynchronize the neurons, can be the reason for an antagonistic response of the system, which organizes itself into a state of stronger coupling and counteracts the impact of noise. This mechanism, as well as a high potential for multistability, is also demonstrated numerically for a coupled pair of Hodgkin-Huxley neurons.
  • Item
    Semiconductor laser linewidth theory revisited
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2021) Wenzel, Hans; Kantner, Markus; Radziunas, Mindaugas; Bandelow, Uwe
    More and more applications require semiconductor lasers distinguished not only by large modulation bandwidths or high output powers, but also by small spectral linewidths. The theoretical understanding of the root causes limiting the linewidth is therefore of great practical relevance. In this paper, we derive a general expression for the calculation of the spectral linewidth step by step in a self-contained manner. We build on the linewidth theory developed in the 1980s and 1990s but look from a modern perspective, in the sense that we choose as our starting points the time-dependent coupled-wave equations for the forward and backward propagating fields and an expansion of the fields in terms of the stationary longitudinal modes of the open cavity. As a result, we obtain rather general expressions for the longitudinal excess factor of spontaneous emission (K-factor) and the effective Alpha-factor including the effects of nonlinear gain (gain compression) and refractive index (Kerr effect), gain dispersion and longitudinal spatial hole burning in multi-section cavity structures. The effect of linewidth narrowing due to feedback from an external cavity often described by the so-called chirp reduction factor is also automatically included. We propose a new analytical formula for the dependence of the spontaneous emission on the carrier density avoiding the use of the population inversion factor. The presented theoretical framework is applied to a numerical study of a two-section distributed Bragg reflector laser.