Search Results

Now showing 1 - 4 of 4
  • Item
    Effective Numerical Algorithm for Simulations of Beam Stabilization in Broad Area Semiconductor Lasers and Amplifiers
    (Milton Park : Taylor and Francis Ltd., 2014) Radziunas, M.; Čiegis, R.
    Abstract: A 2 + 1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented. The domain decomposition method is used to parallelize the sequential algorithm. The parallel algorithm is implemented by using Message Passing Interface system, results of computational experiments are presented and the scalability of the algorithm is analyzed. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts.
  • Item
    Modeling and simulations of beam stabilization in edge-emitting broad area semiconductor devices
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Radziunas, Mindaugas; Cˇ iegis, Raimondas
    A 2+1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented and implemented on a parallel compute cluster. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts
  • Item
    Modeling and efficient simulations of broad-area edge-emitting semiconductor lasers and amplifiers
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2016) Radziunas, Mindaugas
    We present a (2+1)-dimensional partial differential equation model for spatial-lateral dynamics of edge-emitting broad-area semiconductor devices and several extensions of this model describing different physical effects. MPI-based parallelization of the resulting middlesize numerical problem is implemented and tested on the blade cluster and separate multi-core computers at the Weierstrass Institute in Berlin. It was found, that an application of 25-30 parallel processes on all considered platforms was guaranteeing a nearly optimal performance of the algorithm with the speedup around 20-25 and the efficiency of 0.7-0.8. It was also shown, that a simultaneous usage of several in-house available multi-core computers allows a further increase of the speedup without a significant loss of the efficiency. Finally, an importance of the considered problem and the efficient numerical simulations of this problem were illustrated by a few examples occurring in real world applications.
  • Item
    On the numerical approximation of a viscoelastodynamic problem with unilateral constraints
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Petrov, Adrien; Martins, J.A.C.
    The present work is dedicated to the study of numerical schemes for a viscoelastic bar vibrating longitudinally and having its motion limited by rigid obstacles at the both ends. Finite elements and finite difference schemes are presented and their convergence is proved. Finally, some numerical examples are reported and analyzed.