Search Results

Now showing 1 - 4 of 4
  • Item
    Scaling of instability timescales of Antarctic outlet glaciers based on one-dimensional similitude analysis
    (Göttingen : Copernicus GmbH, 2019) Levermann, A.; Feldmann, J.
    Recent observations and ice-dynamic modeling suggest that a marine ice-sheet instability (MISI) might have been triggered in West Antarctica. The corresponding outlet glaciers, Pine Island Glacier (PIG) and Thwaites Glacier (TG), showed significant retreat during at least the last 2 decades. While other regions in Antarctica have the topographic predisposition for the same kind of instability, it is so far unclear how fast these instabilities would unfold if they were initiated. Here we employ the concept of similitude to estimate the characteristic timescales of several potentially MISI-prone outlet glaciers around the Antarctic coast. Our results suggest that TG and PIG have the fastest response time of all investigated outlets, with TG responding about 1.25 to 2 times as fast as PIG, while other outlets around Antarctica would be up to 10 times slower if destabilized. These results have to be viewed in light of the strong assumptions made in their derivation. These include the absence of ice-shelf buttressing, the one-dimensionality of the approach and the uncertainty of the available data. We argue however that the current topographic situation and the physical conditions of the MISI-prone outlet glaciers carry the information of their respective timescale and that this information can be partially extracted through a similitude analysis.
  • Item
    Gate controlled valley polarizer in bilayer graphene
    ([London] : Nature Publishing Group UK, 2020) Chen, Hao; Zhou, Pinjia; Liu, Jiawei; Qiao, Jiabin; Oezyilmaz, Barbaros; Martin, Jens
    Sign reversal of Berry curvature across two oppositely gated regions in bilayer graphene can give rise to counter-propagating 1D channels with opposite valley indices. Considering spin and sub-lattice degeneracy, there are four quantized conduction channels in each direction. Previous experimental work on gate-controlled valley polarizer achieved good contrast only in the presence of an external magnetic field. Yet, with increasing magnetic field the ungated regions of bilayer graphene will transit into the quantum Hall regime, limiting the applications of valley-polarized electrons. Here we present improved performance of a gate-controlled valley polarizer through optimized device geometry and stacking method. Electrical measurements show up to two orders of magnitude difference in conductance between the valley-polarized state and gapped states. The valley-polarized state displays conductance of nearly 4e2/h and produces contrast in a subsequent valley analyzer configuration. These results pave the way to further experiments on valley-polarized electrons in zero magnetic field.
  • Item
    Spectral actinic flux in the lower troposphere: Measurement and 1-D simulations for cloudless, broken cloud and overcast situations
    (München : European Geopyhsical Union, 2005) Kylling, A.; Webb, A.R.; Kift, R.; Gobbi, G.P.; Ammannato, L.; Barnaba, F.; Bais, A.; Kazadzis, S.; Wendisch, M.; Jäkel, E.; Schmidt, S.; Kniffka, A.; Thiel, S.; Junkermann, W.; Blumthaler, M.; Silbernagl, R.; Schallhart, B.; Schmitt, R.; Kjeldstad, B.; Thorseth, T.M.; Scheirer, R.; Mayer, B.
    In September 2002, the first INSPECTRO campaign to study the influence of clouds on the spectral actinic flux in the lower troposphere was carried out in East Anglia, England. Measurements of the actinic flux, the irradiance and aerosol and cloud properties were made from four ground stations and by aircraft. The radiation measurements were modelled using the uvspec model and ancillary data. For cloudless conditions, the measurements of the actinic flux were reproduced by 1-D radiative transfer modelling within the measurement and model uncertainties of about ±10%. For overcast days, the ground-based and aircraft radiation measurements and the cloud microphysical property measurements are consistent within the framework of 1-D radiative transfer and within experimental uncertainties. Furthermore, the actinic flux is increased by between 60-100% above the cloud when compared to a cloudless sky, with the largest increase for the optically thickest cloud. Correspondingly, the below cloud actinic flux is decreased by about 55-65%. Just below the cloud top, the downwelling actinic flux has a maximum that is seen in both the measurements and the model results. For broken clouds the traditional cloud fraction approximation is not able to simultaneously reproduce the measured above-cloud enhancement and below-cloud reduction in the actinic flux.
  • Item
    Bistable systems with stochastic noise: Virtues and limits of effective one-dimensional Langevin equations
    (Göttingen : Copernicus GmbH, 2012) Lucarini, V.; Faranda, D.; Willeit, M.
    The understanding of the statistical properties and of the dynamics of multistable systems is gaining more and more importance in a vast variety of scientific fields. This is especially relevant for the investigation of the tipping points of complex systems. Sometimes, in order to understand the time series of given observables exhibiting bimodal distributions, simple one-dimensional Langevin models are fitted to reproduce the observed statistical properties, and used to investing-ate the projected dynamics of the observable. This is of great relevance for studying potential catastrophic changes in the properties of the underlying system or resonant behaviours like those related to stochastic resonance-like mechanisms. In this paper, we propose a framework for encasing this kind of studies, using simple box models of the oceanic circulation and choosing as observable the strength of the thermohaline circulation. We study the statistical properties of the transitions between the two modes of operation of the thermohaline circulation under symmetric boundary forcings and test their agreement with simplified one-dimensional phenomenological theories. We extend our analysis to include stochastic resonance-like amplification processes. We conclude that fitted one-dimensional Langevin models, when closely scrutinised, may result to be more ad-hoc than they seem, lacking robustness and/or well-posedness. They should be treated with care, more as an empiric descriptive tool than as methodology with predictive power.