Search Results

Now showing 1 - 2 of 2
  • Item
    Fano regime of transport through open quantum dots
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Racec, Roxana; Wulf, Ulrich; Racec, Paul Nicolae
    We analyze a quantum dot strongly coupled to the conducting leads via quantum point contacts - Fano regime of transport - and report a variety of resonant states which demonstrate the dominance of the interacting resonances in the scattering process in a low confining potential. There are resonant states similar to the eigenstates of the isolated dot, whose widths increase with increasing the coupling strength to the environment, and hybrid resonant states. The last ones are approximatively obtained as a linear combination of eigenstates with the same parity in the lateral direction, and the corresponding resonances show the phenomena of resonance trapping or level repulsion. The existence of the hybrid modes suggests that the open quantum dot behaves in the Fano regime like an artificial molecule quantum point contacts
  • Item
    Scattering theory for open quantum systems
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Behrndt, Jussi; Malamud, Mark M.; Neidhardt, Hagen; Exner, Pavel
    Quantum systems which interact with their environment are often modeled by maximal dissipative operators or so-called Pseudo-Hamiltonians. In this paper the scattering theory for such open systems is considered. First it is assumed that a single maximal dissipative operator $A_D$ in a Hilbert space $sH$ is used to describe an open quantum system. In this case the minimal self-adjoint dilation $widetilde K$ of $A_D$ can be regarded as the Hamiltonian of a closed system which contains the open system $[A_D,sH]$, but since $widetilde K$ is necessarily not semibounded from below, this model is difficult to interpret from a physical point of view. In the second part of the paper an open quantum system is modeled with a family $[A(mu)]$ of maximal dissipative operators depending on energy $mu$, and it is shown that the open system can be embedded into a closed system where the Hamiltonian is semibounded. Surprisingly it turns out that the corresponding scattering matrix can be completely recovered from scattering matrices of single Pseudo-Hamiltonians as in the first part of the paper. The general results are applied to a class of Sturm-Liouville operators arising in dissipative and quantum transmitting Schrödinger-Poisson systems.