Search Results

Now showing 1 - 5 of 5
Loading...
Thumbnail Image
Item

Ozone depletion in the Arctic and Antarctic stratosphere induced by wildfire smoke

2022, Ansmann, Albert, Ohneiser, Kevin, Chudnovsky, Alexandra, Knopf, Daniel A., Eloranta, Edwin W., Villanueva, Diego, Seifert, Patric, Radenz, Martin, Barja, Boris, Zamorano, Félix, Jimenez, Cristofer, Engelmann, Ronny, Baars, Holger, Griesche, Hannes, Hofer, Julian, Althausen, Dietrich, Wandinger, Ulla

A record-breaking stratospheric ozone loss was observed over the Arctic and Antarctica in 2020. Strong ozone depletion occurred over Antarctica in 2021 as well. The ozone holes developed in smoke-polluted air. In this article, the impact of Siberian and Australian wildfire smoke (dominated by organic aerosol) on the extraordinarily strong ozone reduction is discussed. The study is based on aerosol lidar observations in the North Pole region (October 2019-May 2020) and over Punta Arenas in southern Chile at 53.2°S (January 2020-November 2021) as well as on respective NDACC (Network for the Detection of Atmospheric Composition Change) ozone profile observations in the Arctic (Ny-Ålesund) and Antarctica (Neumayer and South Pole stations) in 2020 and 2021. We present a conceptual approach on how the smoke may have influenced the formation of polar stratospheric clouds (PSCs), which are of key importance in the ozone-depleting processes. The main results are as follows: (a) the direct impact of wildfire smoke below the PSC height range (at 10-12 km) on ozone reduction seems to be similar to well-known volcanic sulfate aerosol effects. At heights of 10-12 km, smoke particle surface area (SA) concentrations of 5-7 μm2 cm-3 (Antarctica, spring 2021) and 6-10 μm2 cm-3 (Arctic, spring 2020) were correlated with an ozone reduction in terms of ozone partial pressure of 0.4-1.2 mPa (about 30 % further ozone reduction over Antarctica) and of 2-3.5 mPa (Arctic, 20 %-30 % reduction with respect to the long-term springtime mean). (b) Within the PSC height range, we found indications that smoke was able to slightly increase the PSC particle number and surface area concentration. In particular, a smoke-related additional ozone loss of 1-2 mPa (10 %-20 % contribution to the total ozone loss over Antarctica) was observed in the 14-23 km PSC height range in September-October 2020 and 2021. Smoke particle number concentrations ranged from 10 to 100 cm-3 and were about a factor of 10 (in 2020) and 5 (in 2021) above the stratospheric aerosol background level. Satellite observations indicated an additional mean column ozone loss (deviation from the long-term mean) of 26-30 Dobson units (9 %-10 %, September 2020, 2021) and 52-57 Dobson units (17 %-20 %, October 2020, 2021) in the smoke-polluted latitudinal Antarctic belt from 70-80°S. Copyright:

Loading...
Thumbnail Image
Item

Simultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations

2006, Blum, U., Khosrawi, F., Baumgarten, G., Stebel, K., Müller, R., Fricke, K.H.

The importance of polar stratospheric clouds (PSC) for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT) particles observed at the cloud top above Esrange.

Loading...
Thumbnail Image
Item

NOy production, ozone loss and changes in net radiative heating due to energetic particle precipitation in 2002–2010

2018-1-29, Sinnhuber, Miriam, Berger, Uwe, Funke, Bernd, Nieder, Holger, Reddmann, Thomas, Stiller, Gabriele, Versick, Stefan, von Clarmann, Thomas, Wissing, Jan Maik

We analyze the impact of energetic particle precipitation on the stratospheric nitrogen budget, ozone abundances and net radiative heating using results from three global chemistry-climate models considering solar protons and geomagnetic forcing due to auroral or radiation belt electrons. Two of the models cover the atmosphere up to the lower thermosphere, the source region of auroral NO production. Geomagnetic forcing in these models is included by prescribed ionization rates. One model reaches up to about 80 km, and geomagnetic forcing is included by applying an upper boundary condition of auroral NO mixing ratios parameterized as a function of geomagnetic activity. Despite the differences in the implementation of the particle effect, the resulting modeled NOy in the upper mesosphere agrees well between all three models, demonstrating that geomagnetic forcing is represented in a consistent way either by prescribing ionization rates or by prescribing NOy at the model top. Compared with observations of stratospheric and mesospheric NOy from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument for the years 2002–2010, the model simulations reproduce the spatial pattern and temporal evolution well. However, after strong sudden stratospheric warmings, particle-induced NOy is underestimated by both high-top models, and after the solar proton event in October 2003, NOy is overestimated by all three models. Model results indicate that the large solar proton event in October 2003 contributed about 1–2 Gmol (109 mol) NOy per hemisphere to the stratospheric NOy budget, while downwelling of auroral NOx from the upper mesosphere and lower thermosphere contributes up to 4 Gmol NOy. Accumulation over time leads to a constant particle-induced background of about 0.5–1 Gmol per hemisphere during solar minimum, and up to 2 Gmol per hemisphere during solar maximum. Related negative anomalies of ozone are predicted by the models in nearly every polar winter, ranging from 10–50 % during solar maximum to 2–10 % during solar minimum. Ozone loss continues throughout polar summer after strong solar proton events in the Southern Hemisphere and after large sudden stratospheric warmings in the Northern Hemisphere. During mid-winter, the ozone loss causes a reduction of the infrared radiative cooling, i.e., a positive change of the net radiative heating (effective warming), in agreement with analyses of geomagnetic forcing in stratospheric temperatures which show a warming in the late winter upper stratosphere. In late winter and spring, the sign of the net radiative heating change turns to negative (effective cooling). This spring-time cooling lasts well into summer and continues until the following autumn after large solar proton events in the Southern Hemisphere, and after sudden stratospheric warmings in the Northern Hemisphere.

Loading...
Thumbnail Image
Item

Long-term lidar observations of polar stratospheric clouds at Esrange in northern Sweden

2005, Blum, U., Fricke, K.H., Müller, K.P., Siebert, J., Baumgarten, G.

Polar stratospheric clouds (PSCs) play a key role in the depletion of polar ozone. The type of cloud and the length of time for which it exists are crucial for the amount of chlorine activation during the polar night. The Bonn University backscatter lidar at Esrange in northern Sweden (68◦N, 21◦E) is well equipped for long-term observation and classification of these clouds. Nearly continuous measurements through several winters are rare, in particular in wave-active regions like Esrange. Lidar measurements have been performed each winter since 1997—a total of more than 2000 h of observation time has been accumulated, including more than 300 h with PSCs. Analysis of this unique data set leads to a classification scheme with four different scattering characteristics which can be associated with four different cloud types: (1) supercooled ternary solution (STS), (2) nitric acid trihydrate (NAT), (3) ice and (4) mixtures of solid and liquid particles. The analysis of observations over seven winters gives an overview of the frequency of appearance of the individual PSC types. Most of the clouds contain layers of different PSC types. The analysis of these layers shows STS and mixed clouds to occur most frequently, with more than 39% and 37% of all PSC observations, respectively, whereas NAT (15%) and ice clouds (9%) are seen only rarely. The lidar is located close to the Scandinavian mountain ridge, which is a major source of orographically induced gravity waves that can rapidly cool the atmosphere below cloud formation temperatures. Comparing the individual existence temperature of the observed cloud type with the synoptic-scale temperature provided by the European Centre for Medium-range Weather Forecasts (ECMWF) gives information on the frequency of synoptically and wave-induced PSCs. Further, the analysis of ECMWF temperature and wind data gives an estimate of the transparency of the atmosphere to stationary gravity waves. During more than 80% of all PSC observations in synoptic-scale temperatures which were too warm the atmosphere was transparent for stationary gravity waves. Our measurements show that dynamically induced cooling is crucial for the existence of PSCs above Esrange. In particular ice PSCs are observed only in situations where there are gravity waves.

Loading...
Thumbnail Image
Item

Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008-2010 based on CARIBIC observations

2013, Andersson, S.M., Martinsson, B.G., Friberg, J., Brenninkmeijer, C.A.M., Rauthe-Schöch, A., Hermann, M., van Velthoven, P.F.J., Zahn, A.

Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska), Sarychev (Russia) and also during the Eyjafjallajökull (Iceland) eruptions in the period 2008–2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10–12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajökull in spring 2010. Elemental concentrations of the collected aerosol were obtained by accelerator-based analysis. Aerosol from the Eyjafjallajökull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajökull were dominated by the ash and sulphate component (∼45% each) while samples collected in the tropopause region and LMS mainly consisted of sulphate (50–77%) and carbon (21–43%). These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e) of sulphur dioxide in the studied volcanic cloud was estimated to be 45 ± 22 days.