Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Influence of the Reaction Injection Moulding Process on the Thermomechanical Behaviour of Fast Curing Polyurethane

2022, Lehmenkühler, Peter, Stommel, Markus

In this contribution, the influence of the reaction injection moulding process on the thermomechanical material behaviour of aliphatic hexamethylene diisocyanate (HDI) based fast curing polyurethane is demonstrated. Uniaxial tensile tests, temperature-frequency dependent dynamic mechanical thermal analysis (DMTA) and Differential Scanning Calorimetry (DSC) are used to show the differences in properties for ten different sets of process parameters. The mould and resin components temperature, the mass flow during the filling process and the residence time during the reaction process of the polyurethane are varied in several stages. Further experiments to determine the molar mass of the molecular chain between two crosslinking points of the polyurethane are used to explain the process influences on the thermomechanical properties. Thus, a direct correlation between manufacturing and material properties is shown. In addition, the mutual effect of the different parameters and their overall influence on the material behaviour is presented.

Loading...
Thumbnail Image
Item

Heterogeneous freezing on pyroelectric poly(vinylidene fluoride-co-trifluoroethylene) thin films

2020, Apelt, Sabine, Höhne, Susanne, Uhlmann, Petra, Bergmann, Ute

Active deicing of technical surfaces, such as for wind turbines and heat exchangers, currently requires the usage of heat or chemicals. Passive coating strategies that postpone the freezing of covering water would be beneficial in order to save costs and energy. One hypothesis is that pyroelectric active materials can achieve this because of the surface charges generated on these materials when they are subject to a temperature change. High-quality poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films with a high crystallinity, prefererd edge-on orientation, low surface roughness, and comprised of the β-analogous ferroelectric phase were deposited by spin-coating. Freezing experiments with a cooling rate of 1 K min−1 were made on P(VDF-TrFE) coatings in order to separate the effect of different parameters such as the poling direction, film thickness, used solvent, deposition process, underlying substrate, and annealing temperature on the achievable supercooling. The topography and the underlying substrate significantly changed the distribution of freezing temperatures of water droplets in contact with these thin films. In contrast, no significant effect of the thickness, morphology, or pyroelectric effect of the as-prepared domain-state on the freezing temperatures was found.

Loading...
Thumbnail Image
Item

A discussion of the reaction rate and the cell voltage of an intercalation electrode during discharge

2018, Landstorfer, Manuel

In this work we discuss the modeling procedure and validation of a non-porous intercalation half-cell during galvanostatic discharge. The modeling is based on continuum thermodynamics with non-equilibrium processes in the active intercalation particle, the electrolyte, and the common interface where the intercalation reaction occurs. This yields balance equations for the transport of charge and intercalated lithium in the intercalation compound, a surface reaction rate at the interface, and transport equations in the electrolyte for the concentration of lithium ions and the electrostatic potential. An expression for the measured cell voltage is then rigorously derived for a half cell with metallic lithium as counter electrode. The model is then in detail investigated and discussed in terms of scalings of the non-equilibrium parameters, i.e. the diffusion coefficients of the active phase and the electrolyte, conductivity of both phases, and the exchange current density, with numerical solutions of the underlying PDE system. The current density as well as all non-equilibrium parameters are scaled with respect to the 1-C current density of the intercalation electrode and the C-rate of discharge. Further we derive an expression for the capacity of the intercalation cell, which allows us to compute numerically the cell voltage as function of the capacity and the C-rate. Within a hierarchy of approximations of the non-equilibrium processes we provide computations of the cell voltage for various values of the diffusion coefficients, the conductivities and the exchange current density. For the later we provide finally a discussion for possible concentration dependencies and (surface) thermodynamic consistency.