Search Results

Now showing 1 - 4 of 4
  • Item
    A local hybrid surrogate-based finite element tearing interconnecting dual-primal method for nonsmooth random partial differential equations
    (Chichester [u.a.] : Wiley, 2021) Eigel, Martin; Gruhlke, Robert
    A domain decomposition approach for high-dimensional random partial differential equations exploiting the localization of random parameters is presented. To obtain high efficiency, surrogate models in multielement representations in the parameter space are constructed locally when possible. The method makes use of a stochastic Galerkin finite element tearing interconnecting dual-primal formulation of the underlying problem with localized representations of involved input random fields. Each local parameter space associated to a subdomain is explored by a subdivision into regions where either the parametric surrogate accuracy can be trusted or where instead one has to resort to Monte Carlo. A heuristic adaptive algorithm carries out a problem-dependent hp-refinement in a stochastic multielement sense, anisotropically enlarging the trusted surrogate region as far as possible. This results in an efficient global parameter to solution sampling scheme making use of local parametric smoothness exploration for the surrogate construction. Adequately structured problems for this scheme occur naturally when uncertainties are defined on subdomains, for example, in a multiphysics setting, or when the Karhunen–Loève expansion of a random field can be localized. The efficiency of the proposed hybrid technique is assessed with numerical benchmark problems illustrating the identification of trusted (possibly higher order) surrogate regions and nontrusted sampling regions. © 2020 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.
  • Item
    A hybrid FETI-DP method for non-smooth random partial differential equations
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Eigel, Martin; Gruhlke, Robert
    A domain decomposition approach exploiting the localization of random parameters in highdimensional random PDEs is presented. For high efficiency, surrogate models in multi-element representations are computed locally when possible. This makes use of a stochastic Galerkin FETI-DP formulation of the underlying problem with localized representations of involved input random fields. The local parameter space associated to a subdomain is explored by a subdivision into regions where the parametric surrogate accuracy can be trusted and where instead Monte Carlo sampling has to be employed. A heuristic adaptive algorithm carries out a problemdependent hp refinement in a stochastic multi-element sense, enlarging the trusted surrogate region in local parametric space as far as possible. This results in an efficient global parameter to solution sampling scheme making use of local parametric smoothness exploration in the involved surrogate construction. Adequately structured problems for this scheme occur naturally when uncertainties are defined on sub-domains, e.g. in a multi-physics setting, or when the Karhunen-Loéve expansion of a random field can be localized. The efficiency of this hybrid technique is demonstrated with numerical benchmark problems illustrating the identification of trusted (possibly higher order) surrogate regions and non-trusted sampling regions.
  • Item
    Non-intrusive tensor reconstruction for high dimensional random PDEs
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Eigel, Martin; Neumann, Johannes; Schneider, Reinhold; Wolf, Sebastian
    This paper examines a completely non-intrusive, sample-based method for the computation of functional low-rank solutions of high dimensional parametric random PDEs which have become an area of intensive research in Uncertainty Quantification (UQ). In order to obtain a generalized polynomial chaos representation of the approximate stochastic solution, a novel black-box rank-adapted tensor reconstruction procedure is proposed. The performance of the described approach is illustrated with several numerical examples and compared to Monte Carlo sampling.
  • Item
    Low-rank tensor reconstruction of concentrated densities with application to Bayesian inversion
    (Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2019) Eigel, Martin; Gruhlke, Robert; Marschall, Manuel
    A novel method for the accurate functional approximation of possibly highly concentrated probability densities is developed. It is based on the combination of several modern techniques such as transport maps and nonintrusive reconstructions of low-rank tensor representations. The central idea is to carry out computations for statistical quantities of interest such as moments with a convenient reference measure which is approximated by an numerical transport, leading to a perturbed prior. Subsequently, a coordinate transformation leads to a beneficial setting for the further function approximation. An efficient layer based transport construction is realized by using the Variational Monte Carlo (VMC) method. The convergence analysis covers all terms introduced by the different (deterministic and statistical) approximations in the Hellinger distance and the Kullback-Leibler divergence. Important applications are presented and in particular the context of Bayesian inverse problems is illuminated which is a central motivation for the developed approach. Several numerical examples illustrate the efficacy with densities of different complexity.