Search Results

Now showing 1 - 10 of 16
  • Item
    Comparison of particle number size distribution trends in ground measurements and climate models
    (Katlenburg-Lindau : EGU, 2022) Leinonen, Ville; Kokkola, Harri; Yli-Juuti, Taina; Mielonen, Tero; Kühn, Thomas; Nieminen, Tuomo; Heikkinen, Simo; Miinalainen, Tuuli; Bergman, Tommi; Carslaw, Ken; Decesari, Stefano; Fiebig, Markus; Hussein, Tareq; Kivekäs, Niku; Krejci, Radovan; Kulmala, Markku; Leskinen, Ari; Massling, Andreas; Mihalopoulos, Nikos; Mulcahy, Jane P.; Noe, Steffen M.; van Noije, Twan; O'Connor, Fiona M.; O'Dowd, Colin; Olivie, Dirk; Pernov, Jakob B.; Petäjä, Tuukka; Seland, Øyvind; Schulz, Michael; Scott, Catherine E.; Skov, Henrik; Swietlicki, Erik; Tuch, Thomas; Wiedensohler, Alfred; Virtanen, Annele; Mikkonen, Santtu
    Despite a large number of studies, out of all drivers of radiative forcing, the effect of aerosols has the largest uncertainty in global climate model radiative forcing estimates. There have been studies of aerosol optical properties in climate models, but the effects of particle number size distribution need a more thorough inspection. We investigated the trends and seasonality of particle number concentrations in nucleation, Aitken, and accumulation modes at 21 measurement sites in Europe and the Arctic. For 13 of those sites, with longer measurement time series, we compared the field observations with the results from five climate models, namely EC-Earth3, ECHAM-M7, ECHAM-SALSA, NorESM1.2, and UKESM1. This is the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five earth system models (ESMs). We found that the trends of particle number concentrations were mostly consistent and decreasing in both measurements and models. However, for many sites, climate models showed weaker decreasing trends than the measurements. Seasonal variability in measured number concentrations, quantified by the ratio between maximum and minimum monthly number concentration, was typically stronger at northern measurement sites compared to other locations. Models had large differences in their seasonal representation, and they can be roughly divided into two categories: for EC-Earth and NorESM, the seasonal cycle was relatively similar for all sites, and for other models the pattern of seasonality varied between northern and southern sites. In addition, the variability in concentrations across sites varied between models, some having relatively similar concentrations for all sites, whereas others showed clear differences in concentrations between remote and urban sites. To conclude, although all of the model simulations had identical input data to describe anthropogenic mass emissions, trends in differently sized particles vary among the models due to assumptions in emission sizes and differences in how models treat size-dependent aerosol processes. The inter-model variability was largest in the accumulation mode, i.e. sizes which have implications for aerosol-cloud interactions. Our analysis also indicates that between models there is a large variation in efficiency of long-range transportation of aerosols to remote locations. The differences in model results are most likely due to the more complex effect of different processes instead of one specific feature (e.g. the representation of aerosol or emission size distributions). Hence, a more detailed characterization of microphysical processes and deposition processes affecting the long-range transport is needed to understand the model variability.
  • Item
    Identification and source attribution of organic compounds in ultrafine particles near Frankfurt International Airport
    (Katlenburg-Lindau : European Geosciences Union, 2021) Ungeheuer, Florian; van Pinxteren, Dominik; Vogel, Alexander L.
    Analysing the composition of ambient ultrafine particles (UFPs) is a challenging task due to the low mass and chemical complexity of small particles, yet it is a prerequisite for the identification of particle sources and the assessment of potential health risks. Here, we show the molecular characterization of UFPs, based on cascade impactor (Nano-MOUDI) samples that were collected at an air quality monitoring station near one of Europe's largest airports, in Frankfurt, Germany. At this station, particle-size-distribution measurements show an enhanced number concentration of particles smaller than 50 nm during airport operating hours. We sampled the lower UFP fraction (0.010-0.018, 0.018-0.032, 0.032-0.056 classCombining double low lineinline-formula/m) when the air masses arrived from the airport. We developed an optimized filter extraction procedure using ultra-high-performance liquid chromatography (UHPLC) for compound separation and a heated electrospray ionization (HESI) source with an Orbitrap high-resolution mass spectrometer (HRMS) as a detector for organic compounds. A non-Target screening detected classCombining double low lineinline-formulag1/4200/ organic compounds in the UFP fraction with sample-To-blank ratios larger than 5. We identified the largest signals as homologous series of pentaerythritol esters (PEEs) and trimethylolpropane esters (TMPEs), which are base stocks of aircraft lubrication oils. We unambiguously attribute the majority of detected compounds to jet engine lubrication oils by matching retention times, high-resolution and accurate mass measurements, and comparing tandem mass spectrometry (MS classCombining double low lineinline-formula2/) fragmentation patterns between both ambient samples and commercially available jet oils. For each UFP stage, we created molecular fingerprints to visualize the complex chemical composition of the organic fraction and their average carbon oxidation state. These graphs underline the presence of the homologous series of PEEs and TMPEs and the appearance of jet oil additives (e.g.Tricresyl phosphate, TCP). Targeted screening of TCP confirmed the absence of the harmful tri-iortho/i isomer, while we identified a thermal transformation product of TMPE-based lubrication oil (trimethylolpropane phosphate, TMP-P). Even though a quantitative determination of the identified compounds is limited, the presented method enables the qualitative detection of molecular markers for jet engine lubricants in UFPs and thus strongly improves the source apportionment of UFPs near airports./p. © 2021 BMJ Publishing Group. All rights reserved.
  • Item
    Targeted delivery of functionalized PLGA nanoparticles to macrophages by complexation with the yeast Saccharomyces cerevisiae
    (Chichester : John Wiley and Sons Ltd, 2020) Kiefer, R.; Jurisic, M.; Dahlem, C.; Koch, M.; Schmitt, M.J.; Kiemer, A.K.; Schneider, M.; Breinig, F.
    Nanoparticles (NPs) are able to deliver a variety of substances into eukaryotic cells. However, their usage is often hampered by a lack of specificity, leading to the undesired uptake of NPs by virtually all cell types. In contrast to this, yeast is known to be specifically taken up into immune cells after entering the body. Therefore, we investigated the interaction of biodegradable surface-modified poly(lactic-co-glycolic acid) (PLGA) particles with yeast cells to overcome the unspecificity of the particulate carriers. Cells of different Saccharomyces cerevisiae strains were characterized regarding their interaction with PLGA-NPs under isotonic and hypotonic conditions. The particles were shown to efficiently interact with yeast cells leading to stable NP/yeast-complexes allowing to associate or even internalize compounds. Notably, applying those complexes to a coculture model of HeLa cells and macrophages, the macrophages were specifically targeted. This novel nano-in-micro carrier system suggests itself as a promising tool for the delivery of biologically active agents into phagocytic cells combining specificity and efficiency.
  • Item
    Impact of water uptake and mixing state on submicron particle deposition in the human respiratory tract (HRT) based on explicit hygroscopicity measurements at HRT-like conditions
    (Katlenburg-Lindau : EGU, 2022) Man, Ruiqi; Wu, Zhijun; Zong, Taomou; Voliotis, Aristeidis; Qiu, Yanting; Größ, Johannes; van Pinxteren, Dominik; Zeng, Limin; Herrmann, Hartmut; Wiedensohler, Alfred; Hu, Min
    Particle hygroscopicity plays a key role in determining the particle deposition in the human respiratory tract (HRT). In this study, the effects of hygroscopicity and mixing state on regional and total deposition doses on the basis of the particle number concentration for children, adults, and the elderly were quantified using the Multiple-Path Particle Dosimetry model, based on the size-resolved particle hygroscopicity measurements at HRT-like conditions (relative humidity = 98 %) performed in the North China Plain. The measured particle population with an external mixing state was dominated by hygroscopic particles (number fraction = (91.5 ± 5.7) %, mean ± standard deviation (SD); the same below). Particle hygroscopic growth in the HRT led to a reduction by around 24 % in the total doses of submicron particles for all age groups. Such a reduction was mainly caused by the growth of hygroscopic particles and was more pronounced in the pulmonary and tracheobronchial regions. Regardless of hygroscopicity, the elderly group of people had the highest total dose among three age groups, while children received the maximum total deposition rate. With 270 nm in diameter as the boundary, the total deposition doses of particles smaller than this diameter were overestimated, and those of larger particles were underestimated, assuming no particle hygroscopic growth in the HRT. From the perspective of the daily variation, the deposition rates of hygroscopic particles with an average of (2.88 ± 0.81) × 109 particles h-1 during the daytime were larger than those at night ((2.32 ± 0.24) × 109 particles h-1). On the contrary, hydrophobic particles interpreted as freshly emitted soot and primary organic aerosols exhibited higher deposition rates at nighttime ((3.39 ± 1.34) × 108 particles h-1) than those in the day ((2.58 ± 0.76) × 108 particles h-1). The traffic emissions during the rush hours enhanced the deposition rate of hydrophobic particles. This work provides a more explicit assessment of the impact of hygroscopicity and mixing state on the deposition pattern of submicron particles in the HRT. Copyright:
  • Item
    Hydrodynamik und Lösungsgeschwindigkeit - Untersuchungen zum Einfluss der Hydrodynamik auf die Lösungsgeschwindigkeit schwer wasserlöslicher Arzneistoffe (rev. Fassung 2022)
    (2022) Diebold, Steffen M.
    Gegenstand der vorliegenden Studie war (1) die Beschreibung der Hydrodynamik kompendialer Lösungsgeschwindigkeits-Testapparaturen und die Aufklärung der gastrointestinalen Hydrodynamik von Hunden, (2) die Untersuchung des Einflusses der Hydrodynamik auf die Lösungsgeschwindigkeit schwer wasserlöslicher Arzneistoffe und (3) die Entwicklung eines hydrodynamischen Modells zur Prognose der Auflösegeschwindigkeit schwer wasserlöslicher Arzneistoffe. Die Hydrodynamik kompendialer Lösungsgeschwindigkeits-Testapparaturen, namentlich der Paddle- und der Basket-Apparatur, wurde mit einem Ultraschall-Puls-Echo-Verfahren arzneistoffunabhängig charakterisiert. Die Strömungsgeschwindigkeiten in den Auflösungs-Gefäßen von Paddle- und Basket-Apparatur korrelierten linear mit den Rotationsraten der Rührwerkzeuge. Dadurch ist es nun künftig möglich, die tatsächliche Strömungsgeschwindigkeit der Auflöse-Medien während eines Lösungsgeschwindigkeits-Tests unter beliebigen Rotationsraten zu ermitteln. In der Basket-Apparatur wurden, in Abhängigkeit von den Rotationsraten des Rührwerkes (25 bis 200 rpm), Strömungsgeschwindigkeiten von 0.3 bis 5 cm/s erzielt, in der Paddle-Apparatur dagegen 1.8 bis 37 cm/s. Die Kenntnis dieser Strömungsgeschwindigkeiten wiederum gestattet, die Lösungsgeschwindigkeit von Arzneistoffen unter bestimmten Voraussetzungen zu prognostizieren. Eine solche Voraussage geschah auf der Grundlage einer erweiterten und auf die Paddle-Apparatur adaptierten „Theorie der konvektiven Diffusion“ (Levich). Das hierbei entwickelte „Kombinations-Modell“ gestattete eine Kalkulation von Massentransfer-Daten a priori. Diese stimmten gut überein mit empirischen Massentransfer-Daten aus verschiedenen Lösungsgeschwindigkeits-Experimenten. Neben unterschiedlichen Felodipinpulver-Kollektiven wurde auch erstmals Luftsauerstoff als Vektor hydrodynamischer Untersuchungen eingesetzt. Es zeigte sich, daß das gasförmige Solvendum „Luftsauerstoff“ und das solide Solvendum „Felodipin“ in derselben Auflösungs-Apparatur (Paddle) auch dieselbe Hydrodynamik erfahren. Die Hydrodynamik diskriminierte nicht die unterschiedlichen Aggregatszustände der beiden zur Auflösung gelangenden Arzneistoffe. Die unter Rotationsraten von 25 bis 200 rpm in der Paddle-Apparatur kalkulierten Reynolds-Zahlen (Re) überspannten dabei einen Bereich von Re=2292 bis Re=31025. Die entsprechenden Reynolds-Zahlen der Basket-Apparatur lagen in Größenordnungen von Re=231 bis Re=4541. Grob-kristalline Felodipin-Partikel reagierten empfindlicher auf Veränderungen der Hydrodynamik des Auflösungssystems als mikronisiertes Material derselben chemischen Spezies. Zur Untersuchung der Magenentleerung und des Transits von Flüssigkeiten in Hunden wurde ein szintigraphisches Verfahren eingesetzt. Die Zeitspanne zur vollständigen Magenentleerung (GE>95%) war dabei vom verabreichten Volumen und vom kalorischen Gehalt der oral administrierten Lösungen abhängig. Die Zeitspanne zur Magenentleerung von 200 ml wäßriger Glucose-Lösung 20 % war signifikant größer (278 min.) als nach Verabreichung derselben Menge an NaCl-Lösung 0.9 % (97 min.). Nach Gabe der Glucose-Lösung 20 % betrug die mittlere duodeno-jejunale Transitrate (MTR) 2.7 cm/min. und war damit signifikant beschleunigt im Vergleich zur Gabe derselben Menge an NaCl-Lösung 0.9 % mit 1.1 cm/min.. Die duodeno-jejunalen Transitraten (MTR) waren dabei von der Magenentleerung unabhängig. Ein Aspirationsverfahren wurde zur Bestimmung gastrointestinaler Flußraten herangezogen. Die (auch) von der Magenentleerung beeinflussten ("gastro-intestinalen") Flußraten erreichten nach Administration von 200 ml Glucose 20 % kurzzeitig Spitzenwerte von 20 bis 60 ml/min. (Median: 8.3 ml/min.). Die entsprechenden Flußraten nach Administration von 200 ml NaCl 0.9 % erreichten sogar kurzfristig Spitzenwerte von über 100 ml/min. (Median: 35.0 ml/min.). Trotz der geringeren "gastro-intestinalen" Flußraten nach Gabe der Glucose-Lösungen war die intestinale Lösungsgeschwindigkeit koadministrierten Felodipins deutlich größer als nach Verabreichung der isotonen NaCl-Lösungen. Dies korrelierte mit dem (76 cm pylorus-distal gesammelten) vermehrten Volumen intestinaler Flüssigkeit nach Gabe der hypertonen (!) Glucose-Lösungen.
  • Item
    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
    ([London] : Nature Publishing Group UK, 2020) He, Yongmin; Tang, Pengyi; Hu, Zhili; He, Qiyuan; Zhu, Chao; Wang, Luqing; Zeng, Qingsheng; Golani, Prafful; Gao, Guanhui; Fu, Wei; Huang, Zhiqi; Gao, Caitian; Xia, Juan; Wang, Xingli; Wang, Xuewen; Zhu, Chao; Ramasse, Quentin M.; Zhang, Ao; An, Boxing; Zhang, Yongzhe; Martí-Sánchez, Sara; Morante, Joan Ramon; Wang, Liang; Tay, Beng Kang; Yakobson, Boris I.; Trampert, Achim; Zhang, Hua; Wu, Minghong; Wang, Qi Jie; Arbiol, Jordi; Liu, Zheng
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.
  • Item
    A phenomenology of new particle formation (NPF) at 13 European sites
    (Katlenburg-Lindau : European Geosciences Union, 2021) Bousiotis, Dimitrios; Pope, Francis D.; Beddows, David C. S.; Dall'Osto, Manuel; Massling, Andreas; Nøjgaard, Jakob Klenø; Nordstrøm, Claus; Niemi, Jarkko V.; Portin, Harri; Petäjä, Tuukka; Perez, Noemi; Alastuey, Andrés; Querol, Xavier; Kouvarakis, Giorgos; Mihalopoulos, Nikos; Vratolis, Stergios; Eleftheriadis, Konstantinos; Wiedensohler, Alfred; Weinhold, Kay; Merkel, Maik; Tuch, Thomas; Harrison, Roy M.
    New particle formation (NPF) events occur almost everywhere in the world and can play an important role as a particle source. The frequency and characteristics of NPF events vary spatially, and this variability is yet to be fully understood. In the present study, long-term particle size distribution datasets (minimum of 3 years) from 13 sites of various land uses and climates from across Europe were studied, and NPF events, deriving from secondary formation and not traffic-related nucleation, were extracted and analysed. The frequency of NPF events was consistently found to be higher at rural background sites, while the growth and formation rates of newly formed particles were higher at roadsides (though in many cases differences between the sites were small), underlining the importance of the abundance of condensable compounds of anthropogenic origin found there. The growth rate was higher in summer at all rural background sites studied. The urban background sites presented the highest uncertainty due to greater variability compared to the other two types of site. The origin of incoming air masses and the specific conditions associated with them greatly affect the characteristics of NPF events. In general, cleaner air masses present higher probability for NPF events, while the more polluted ones show higher growth rates. However, different patterns of NPF events were found, even at sites in close proximity (<ĝ€¯200ĝ€¯km), due to the different local conditions at each site. Region-wide events were also studied and were found to be associated with the same conditions as local events, although some variability was found which was associated with the different seasonality of the events at two neighbouring sites. NPF events were responsible for an increase in the number concentration of ultrafine particles of more than 400ĝ€¯% at rural background sites on the day of their occurrence. The degree of enhancement was less at urban sites due to the increased contribution of other sources within the urban environment. It is evident that, while some variables (such as solar radiation intensity, relative humidity, or the concentrations of specific pollutants) appear to have a similar influence on NPF events across all sites, it is impossible to predict the characteristics of NPF events at a site using just these variables, due to the crucial role of local conditions. © Author(s) 2021.
  • Item
    Effects of aerosol size and coating thickness on the molecular detection using extractive electrospray ionization
    (Katlenburg-Lindau : European Geosciences Union, 2021) Lee, Chuan Ping; Surdu, Mihnea; Bell, David M.; Lamkaddam, Houssni; Wang, Mingyi; Ataei, Farnoush; Hofbauer, Victoria; Lopez, Brandon; Donahue, Neil M.; Dommen, Josef; Prevot, Andre S. H.; Slowik, Jay G.; Wang, Dongyu; Baltensperger, Urs; El Haddad, Imad
    Extractive electrospray ionization (EESI) has been a well-known technique for high-throughput online molecular characterization of chemical reaction products and intermediates, detection of native biomolecules, in vivo metabolomics, and environmental monitoring with negligible thermal and ionization-induced fragmentation for over two decades. However, the EESI extraction mechanism remains uncertain. Prior studies disagree on whether particles between 20 and 400nm diameter are fully extracted or if the extraction is limited to the surface layer. Here, we examined the analyte extraction mechanism by assessing the influence of particle size and coating thickness on the detection of the molecules therein. We find that particles are extracted fully: organics-coated NH4NO3 particles with a fixed core volume (156 and 226nm in diameter without coating) showed constant EESI signals for NH4NO3 independent of the shell coating thickness, while the signals of the secondary organic molecules comprising the shell varied proportionally to the shell volume. We also found that the EESI sensitivity exhibited a strong size dependence, with an increase in sensitivity by 1-3 orders of magnitude as particle size decreased from 300 to 30nm. This dependence varied with the electrospray (ES) droplet size, the particle size and the residence time for coagulation in the EESI inlet, suggesting that the EESI sensitivity was influenced by the coagulation coefficient between particles and ES droplets. Overall, our results indicate that, in the EESI, particles are fully extracted by the ES droplets regardless of the chemical composition, when they are collected by the ES droplets. However, their coalescence is not complete and depends strongly on their size. This size dependence is especially relevant when EESI is used to probe size-varying particles as is the case in aerosol formation and growth studies with size ranges below 100nm. © 2021 The Author(s).
  • Item
    Measurement report: Balloon-borne in situ profiling of Saharan dust over Cyprus with the UCASS optical particle counter
    (Katlenburg-Lindau : European Geosciences Union, 2021) Kezoudi, Maria; Tesche, Matthias; Smith, Helen; Tsekeri, Alexandra; Baars, Holger; Dollner, Maximilian; Estellés, Víctor; Bühl, Johannes; Weinzierl, Bernadett; Ulanowski, Zbigniew; Müller, Detlef; Amiridis, Vassilis
    This paper presents measurements of mineral dust concentration in the diameter range from 0.4 to 14.0 µm with a novel balloon-borne optical particle counter, the Universal Cloud and Aerosol Sounding System (UCASS). The balloon launches were coordinated with ground-based active and passive remote-sensing observations and airborne in situ measurements with a research aircraft during a Saharan dust outbreak over Cyprus from 20 to 23 April 2017. The aerosol optical depth at 500 nm reached values up to 0.5 during that event over Cyprus, and particle number concentrations were as high as 50 cm−3 for the diameter range between 0.8 and 13.9 µm. Comparisons of the total particle number concentration and the particle size distribution from two cases of balloon-borne measurements with aircraft observations show reasonable agreement in magnitude and shape despite slight mismatches in time and space. While column-integrated size distributions from balloon-borne measurements and ground-based remote sensing show similar coarse-mode peak concentrations and diameters, they illustrate the ambiguity related to the missing vertical information in passive sun photometer observations. Extinction coefficient inferred from the balloon-borne measurements agrees with those derived from coinciding Raman lidar observations at height levels with particle number concentrations smaller than 10 cm−3 for the diameter range from 0.8 to 13.9 µm. An overestimation of the UCASS-derived extinction coefficient of a factor of 2 compared to the lidar measurement was found for layers with particle number concentrations that exceed 25 cm−3, i.e. in the centre of the dust plume where particle concentrations were highest. This is likely the result of a variation in the refractive index and the shape and size dependency of the extinction efficiency of dust particles along the UCASS measurements. In the future, profile measurements of the particle number concentration and particle size distribution with the UCASS could provide a valuable addition to the measurement capabilities generally used in field experiments that are focussed on the observation of coarse aerosols and clouds.
  • Item
    A full year of aerosol size distribution data from the central Arctic under an extreme positive Arctic Oscillation: insights from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition
    (Katlenburg-Lindau : EGU, 2023) Boyer, Matthew; Aliaga, Diego; Pernov, Jakob Boyd; Angot, Hélène; Quéléver, Lauriane L. J.; Dada, Lubna; Heutte, Benjamin; Dall'Osto, Manuel; Beddows, David C. S.; Brasseur, Zoé; Beck, Ivo; Bucci, Silvia; Duetsch, Marina; Stohl, Andreas; Laurila, Tiia; Asmi, Eija; Massling, Andreas; Thomas, Daniel Charles; Nøjgaard, Jakob Klenø; Chan, Tak; Sharma, Sangeeta; Tunved, Peter; Krejci, Radovan; Hansson, Hans Christen; Bianchi, Federico; Lehtipalo, Katrianne; Wiedensohler, Alfred; Weinhold, Kay; Kulmala, Markku; Petäjä, Tuukka; Sipilä, Mikko; Schmale, Julia; Jokinen, Tuija
    The Arctic environment is rapidly changing due to accelerated warming in the region. The warming trend is driving a decline in sea ice extent, which thereby enhances feedback loops in the surface energy budget in the Arctic. Arctic aerosols play an important role in the radiative balance and hence the climate response in the region, yet direct observations of aerosols over the Arctic Ocean are limited. In this study, we investigate the annual cycle in the aerosol particle number size distribution (PNSD), particle number concentration (PNC), and black carbon (BC) mass concentration in the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. This is the first continuous, year-long data set of aerosol PNSD ever collected over the sea ice in the central Arctic Ocean. We use a k-means cluster analysis, FLEXPART simulations, and inverse modeling to evaluate seasonal patterns and the influence of different source regions on the Arctic aerosol population. Furthermore, we compare the aerosol observations to land-based sites across the Arctic, using both long-term measurements and observations during the year of the MOSAiC expedition (2019-2020), to investigate interannual variability and to give context to the aerosol characteristics from within the central Arctic. Our analysis identifies that, overall, the central Arctic exhibits typical seasonal patterns of aerosols, including anthropogenic influence from Arctic haze in winter and secondary aerosol processes in summer. The seasonal pattern corresponds to the global radiation, surface air temperature, and timing of sea ice melting/freezing, which drive changes in transport patterns and secondary aerosol processes. In winter, the Norilsk region in Russia/Siberia was the dominant source of Arctic haze signals in the PNSD and BC observations, which contributed to higher accumulation-mode PNC and BC mass concentrations in the central Arctic than at land-based observatories. We also show that the wintertime Arctic Oscillation (AO) phenomenon, which was reported to achieve a record-breaking positive phase during January-March 2020, explains the unusual timing and magnitude of Arctic haze across the Arctic region compared to longer-term observations. In summer, the aerosol PNCs of the nucleation and Aitken modes are enhanced; however, concentrations were notably lower in the central Arctic over the ice pack than at land-based sites further south. The analysis presented herein provides a current snapshot of Arctic aerosol processes in an environment that is characterized by rapid changes, which will be crucial for improving climate model predictions, understanding linkages between different environmental processes, and investigating the impacts of climate change in future Arctic aerosol studies.