Search Results

Now showing 1 - 6 of 6
  • Item
    Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
    ([London] : Nature Publishing Group UK, 2020) He, Yongmin; Tang, Pengyi; Hu, Zhili; He, Qiyuan; Zhu, Chao; Wang, Luqing; Zeng, Qingsheng; Golani, Prafful; Gao, Guanhui; Fu, Wei; Huang, Zhiqi; Gao, Caitian; Xia, Juan; Wang, Xingli; Wang, Xuewen; Zhu, Chao; Ramasse, Quentin M.; Zhang, Ao; An, Boxing; Zhang, Yongzhe; Martí-Sánchez, Sara; Morante, Joan Ramon; Wang, Liang; Tay, Beng Kang; Yakobson, Boris I.; Trampert, Achim; Zhang, Hua; Wu, Minghong; Wang, Qi Jie; Arbiol, Jordi; Liu, Zheng
    Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.
  • Item
    Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols
    ([London] : Nature Publishing Group UK, 2018) Brüggemann, Martin; Hayeck, Nathalie; George, Christian
    The surface of the oceans acts as a global sink and source for trace gases and aerosol particles. Recent studies suggest that photochemical reactions at this air/water interface produce organic vapors, enhancing particle formation in the atmosphere. However, current model calculations neglect this abiotic source of reactive compounds and account only for biological emissions. Here we show that interfacial photochemistry serves as a major abiotic source of volatile organic compounds (VOCs) on a global scale, capable to compete with emissions from marine biology. Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean. Moreover, we provide global distributions of VOC formation potentials, which can be used as simple tools for field studies to estimate photochemical VOC emissions depending on location and season.
  • Item
    Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition
    (London : Nature Publ. Group, 2017) Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin
    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.
  • Item
    Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C–H bond activation
    ([London] : Nature Publishing Group UK, 2018) Zhang, Yaoyuan; Zhao, Yun; Otroshchenko, Tatiana; Lund, Henrik; Pohl, Marga-Martina; Rodemerck, Uwe; Linke, David; Jiao, Haijun; Jiang, Guiyuan; Kondratenko, Evgenii V.
    Due to the complexity of heterogeneous catalysts, identification of active sites and the ways for their experimental design are not inherently straightforward but important for tailored catalyst preparation. The present study reveals the active sites for efficient C–H bond activation in C1–C4 alkanes over ZrO2 free of any metals or metal oxides usually catalysing this reaction. Quantum chemical calculations suggest that two Zr cations located at an oxygen vacancy are responsible for the homolytic C–H bond dissociation. This pathway differs from that reported for other metal oxides used for alkane activation, where metal cation and neighbouring lattice oxygen form the active site. The concentration of anion vacancies in ZrO2 can be controlled through adjusting the crystallite size. Accordingly designed ZrO2 shows industrially relevant activity and durability in non-oxidative propane dehydrogenation and performs superior to state-of-the-art catalysts possessing Pt, CrOx, GaOx or VOx species.
  • Item
    Physiological Parameters Relevant to Dissolution Testing - Hydrodynamic Considerations (rev. and suppl. version)
    (Tübingen : Universitätsbibliothek Tübingen, 2023) Diebold, Steffen M.
    The first two sections of the monograph present an introduction into basic hydrodynamics relevant to in vitro dissolution testing including V. G. Levichs convective diffusion theory and the authors combination model. This part is followed by hydrodynamic considerations of in vivo dissolution including hydrodynamic problems inherent to in vivo bioavailability of solid oral dosage forms. Hydrodynamics in the upper GI tract contribute to in vivo dissolution. Our ability to forecast dissolution of poorly soluble drugs in vitro depends on our knowledge of and ability to control hydrodynamics as well as other factors influencing dissolution. Provided suitable conditions (apparatus, hydrodynamics, media) are chosen for the dissolution test, it seems possible to predict dissolution limitations to the oral absorption of drugs and to reflect variations in hydrodynamic conditions in the upper GI tract. The fluid volume available for dissolution in the gut lumen, the contact time of the dissolved compound with the absorptive sites and the particle size have been identified as the main hydrodynamic determinants for the absorption of poorly soluble drugs in vivo. The influence of these factors is usually more pronounced than that of the motility pattern or the gastrointestinal flow rates per se.
  • Item
    Intestinal flow rates, absorption of felodipine from the small intestine and attributes of chyme collected at midgut from Labradors
    (Tübingen : Universitätsbibliothek Tübingen, 2023) Diebold, Steffen M.
    The objectives of the present study were (1) to investigate gastrointestinal hydrodynamics of Labradors as a model for human midgut (2) to examine various attributes of intestinal fluids in vivo and (3) to study the influence of hydrodynamics on the dissolution and absorption of a poorly soluble drug from various suspensions. Gastrointestinal flow rates were determined volumetrically using an aspiration method. Isotonic saline and 20 % glucose solutions were used to alter gastrointestinal hydrodynamics. Felodipine, a BCS class II substance, was suspended in these fluids. Osmolality, pH, bile acid concentration and drug solubility in various chyme samples were determined. Blood plasma levels of felodipine were recorded while gastrointestinal dissolution was ongoing. Fluid recovery at midgut fistula was significantly higher (>100 %) for glucose 20 % than for isotonic saline solutions (70 %). After administration of 200 ml glucose 20 % the (overall) grand median of differential gastrointestinal flow rates (DFR) was 8.3 ml/min.. Individual spike flow ranged from 20 up to 60 ml/min. Corresponding flow rates after administration of 200 ml isotonic saline were 35.0 ml/min. for the grand median including individual spike flows beyond 100 ml/min.. Within and between-dog variability in flow rate data was similar. In general, glucose solutions released more evenly. Following oral administration of glucose solution 20 % osmolality of intestinal fluids decreased within 40 min. from about 1000 mOsm. towards more physiological values of about 350 mOsm.. Saturation solubility of felodipine (Cs) in jejunal chyme after administration of either solution (saline or glucose) was determined to be about 10 (µg/ml) on average (median), exposing high variability with time! The intestinal solubility varied greatly within the course of an experiment. However, a strong correlation was observed between the aspirated fluid volume and the dissolved amount of felodipine confirming the well known relationship of Noyes, Whitney, Nernst and Brunner in-vivo. Grand median of pH in jejunal chyme of labradors was determined to be 6.68. Median values range from 4.38-7.62. The pharmacokinetic data showed a slight trend to differences based on particle size and on fluid administered.