Search Results

Now showing 1 - 2 of 2
  • Item
    Light-Regulated Angiogenesis via a Phototriggerable VEGF Peptidomimetic
    (Weinheim : Wiley-VCH, 2021) Nair, Roshna V.; Farrukh, Aleeza; del Campo, Aránzazu
    The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH2 (abbreviated PQK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue. This modification inhibits the angiogenic potential of the peptide temporally. Light exposure of PQK modified hydrogels provide instructive cues to embedded endothelial cells and promote angiogenesis at the illuminated sites of the 3D culture, with the possibility of spatial control. PQK modified photoresponsive biomaterials offer an attractive approach for the dosed delivery and spatial control of pro-angiogenic factors to support regulated vascular growth by just using light as an external trigger.
  • Item
    Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs
    (Basel : MDPI, 2013) Weiss, Ingrid M.; Ghatak, Anindita Sengupta; Koch, Markus; Guth, Christina
    We here present the nucleation and growth of calcium carbonate under the influence of synthetic peptides on topographically patterned poly(dimethylsiloxane) (PDMS) substrates, which have a controlled density of defects between the wrinkles. Experiments with two lysine-rich peptides derived from the extracellular conserved domain E22 of the mollusc chitin synthase Ar-CS1, AKKKKKAS (AS8) and EEKKKKKES (ES9) on these substrates showed their influence on the calcium carbonate morphology. A transition from polycrystalline composites to single crystalline phases was achieved with the peptide AS8 by changing the pH of the buffer solution. We analyzed three different pH values as previous experiments showed that E22 interacts with aragonite biominerals more strongly at pH 7.75 than at pH 9.0. At any given pH, crystals appeared in characteristic morphologies only on wrinkled substrates, and did not occur on the flat, wrinkle-free PDMS substrate. These results suggest that these wrinkled substrates could be useful for controlling the morphologies of other mineral/peptide and mineral/protein composites. In nature, these templates are formed enzymatically by glycosyltransferases containing pH-sensitive epitopes, similar to the peptides investigated here. Our in vitro test systems may be useful to gain understanding of the formation of distinct 3D morphologies in mollusc shells in response to local pH shifts during the mineralization of organic templates.