Search Results

Now showing 1 - 4 of 4
  • Item
    Solvent-antisolvent interactions in metal halide perovskites
    (Cambridge : Soc., 2023) Bautista-Quijano, Jose Roberto; Telschow, Oscar; Paulus, Fabian; Vaynzof, Yana
    The fabrication of metal halide perovskite films using the solvent-engineering method is increasingly common. In this method, the crystallisation of the perovskite layer is triggered by the application of an antisolvent during the spin-coating of a perovskite precursor solution. Herein, we introduce the current state of understanding of the processes involved in the crystallisation of perovskite layers formed by solvent engineering, focusing in particular on the role of antisolvent properties and solvent-antisolvent interactions. By considering the impact of the Hansen solubility parameters, we propose guidelines for selecting the appropriate antisolvent and outline open questions and future research directions for the fabrication of perovskite films by this method.
  • Item
    Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO 3
    ([London] : Nature Publishing Group UK, 2019) Wu, L.S.; Nikitin, S.E.; Wang, Z.; Zhu, W.; Batista, C.D.; Tsvelik, A.M.; Samarakoon, A.M.; Tennant, D.A.; Brando, M.; Vasylechko, L.; Frontzek, M.; Savici, A.T.; Sala, G.; Ehlers, G.; Christianson, A.D.; Lumsden, M.D.; Podlesnyak, A.
    Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.
  • Item
    Perovskite phase heterojunction solar cells
    (London : Nature Publishing Group, 2022) Ji, Ran; Zhang, Zongbao; Hofstetter, Yvonne J.; Buschbeck, Robin; Hänisch, Christian; Paulus, Fabian; Vaynzof, Yana
    Modern photovoltaic devices are often based on a heterojunction structure where two components with different optoelectronic properties are interfaced. The properties of each side of the junction can be tuned by either utilizing different materials (for example, donor/acceptor) or doping (for example, p–n junction) or even varying their dimensionality (for example, 3D/2D). Here we demonstrate the concept of phase heterojunction (PHJ) solar cells by utilizing two polymorphs of the same material. We demonstrate the approach by forming γ-CsPbI3/β-CsPbI3 perovskite PHJ solar cells. We find that all of the photovoltaic parameters of the PHJ device significantly surpass those of each of the single-phase devices, resulting in a maximum power conversion efficiency of 20.1%. These improvements originate from the efficient passivation of the β-CsPbI3 by the larger bandgap γ-CsPbI3, the increase in the built-in potential of the PHJ devices enabled by the energetic alignment between the two phases and the enhanced absorption of light by the PHJ structure. The approach demonstrated here offers new possibilities for the development of photovoltaic devices based on polymorphic materials.
  • Item
    Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance
    (Basingstoke : Nature Publishing Group, 2023) Gallop, Nathaniel. P.; Maslennikov, Dmitry R.; Mondal, Navendu; Goetz, Katelyn P.; Dai, Zhenbang; Schankler, Aaron M.; Sung, Woongmo; Nihonyanagi, Satoshi; Tahara, Tahei; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.; Vaynzof, Yana; Rappe, Andrew M.; Bakulin, Artem A.
    Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.