Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Enlightening Materials with Photoswitches

2020, Goulet-Hanssens, Alexis, Eisenreich, Fabian, Hecht, Stefan

Incorporating molecular photoswitches into various materials provides unique opportunities for controlling their properties and functions with high spatiotemporal resolution using remote optical stimuli. The great and largely still untapped potential of these photoresponsive systems has not yet been fully exploited due to the fundamental challenges in harnessing geometrical and electronic changes on the molecular level to modulate macroscopic and bulk material properties. Herein, progress made during the past decade in the field of photoswitchable materials is highlighted. After pointing to some general design principles, materials with an increasing order of the integrated photoswitchable units are discussed, spanning the range from amorphous settings over surfaces/interfaces and supramolecular ensembles, to liquid crystalline and crystalline phases. Finally, some potential future directions are pointed out in the conclusion. In view of the exciting recent achievements in the field, the future emergence and further development of light-driven and optically programmable (inter)active materials and systems are eagerly anticipated. © 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Loading...
Thumbnail Image
Item

Photoinduced Strain‐Assisted Synthesis of a Stiff‐Stilbene Polymer by Ring‐Opening Metathesis Polymerization

2020, Krishnan, Baiju P., Xue, Lulu, Xiong, Xinhong, Cui, Jiaxi

Developing a novel strategy to synthesize photoresponsive polymers is of significance owing to their potential applications. We report a photoinduced strain‐assisted synthesis of main‐chain stiff‐stilbene polymers by using ring‐opening metathesis polymerization (ROMP), activating a macrocyclic π‐bond connected to a stiff‐stilbene photoswitch through a linker. Since the linker acts as an external constraint, the photoisomerization to the E‐form leads to the stiff‐stilbene being strained and thus reactive to ROMP. The photoisomerization of Z‐form to E‐form was investigated using time‐dependent NMR studies and UV/Vis spectroscopy. The DFT calculation showed that the E‐form was less stable due to a lack of planarity. By the internal strain developed due to the linker constraint through photoisomerization, the E‐form underwent ROMP by a second generation Grubbs catalyst. In contrast, Z‐form did not undergo polymerization under similar conditions. The MALDI‐TOF spectrum of E‐form after polymerization showed the presence of oligomers of >5.2 kDa.