Search Results

Now showing 1 - 4 of 4
  • Item
    The GAPS Programme at TNG: XXXV. Fundamental properties of transiting exoplanet host stars
    (Les Ulis : EDP Sciences, 2022) Biazzo, K.; D’Orazi, V.; Desidera, S.; Turrini, D.; Benatti, S.; Gratton, R.; Magrini, L.; Sozzetti, A.; Baratella, M.; Bonomo, A.S.; Borsa, F.; Claudi, R.; Covino, E.; Damasso, M.; Di Mauro, M.P.; Lanza, A.F.; Maggio, A.; Malavolta, L.; Maldonado, J.; Marzari, F.; Micela, G.; Poretti, E.; Vitello, F.; Affer, L.; Bignamini, A.; Carleo, I.; Cosentino, R.; Fiorenzano, A.F.M.; Giacobbe, P.; Harutyunyan, A.; Leto, G.; Mancini, L.; Molinari, E.; Molinaro, M.; Nardiello, D.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Rainer, M.; Scandariato, G.
    Context. Exoplanetary properties strongly depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Aims. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the Global Architecture of Planetary System program. For the wide visual binary XO-2, we considered both components (N: hosting a transiting planet; S: without a known transiting planet). Our final goal is to widely analyze the sample by deriving several stellar properties, abundances of many elements, kinematic parameters, and discuss them in the context of planetary formation. Methods. We determined the stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at TNG and FEROS at ESO spectra and uniform techniques. Depending on stellar parameters and chemical elements, we used line equivalent widths or spectral synthesis methods. We derived kinematic properties taking advantage of Gaia data and for the first time in exoplanet host stars we estimated ages using elemental ratios as chemical clocks. Results. The effective temperature of our stars is ∼4400-6700 K, while the iron abundance [Fe/H] is within -0.3 and 0.4 dex. Lithium is present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H] are consistent with the Galactic chemical evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O < 0.8, compatible with Si present in rock-forming minerals. Mean C/O and [C/O] values are slightly lower than for the Sun. Most of targets show 1.0 < Mg/Si < 1.5, compatible with Mg distributed between olivine and pyroxene, and mean Mg/Si lower than for the Sun. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemodynamical analysis we find agreement between ages and position within the Galactic disk. Finally, we note a tendency for higher-density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles (e.g., O) for lower-mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. Conclusions. We try to trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars. This kind of study will be useful for upcoming space mission data to get more insights into the formation-migration mechanisms.
  • Item
    Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results
    ([Bellingham, Wash.] : SPIE, 2015) Swift, Jonathan J.; Bottom, Michael; Johnson, John A.; Wright, Jason T.; McCrady, Nate; Wittenmyer, Robert A.; Plavchan, Peter; Riddle, Reed; Muirhead, Philip S.; Herzig, Erich; Myles, Justin; Blake, Cullen H.; Eastman, Jason; Beatty, Thomas G.; Barnes, Stuart I.; Gibson, Steven R.; Lin, Brian; Zhao, Ming; Gardner, Paul; Falco, Emilio; Criswell, Stephen; Nava, Chantanelle; Robinson, Connor; Sliski, David H.; Hedrick, Richard; Ivarsen, Kevin; Hjelstrom, Annie; de Vera, Jon; Szentgyorgyi, Andrew
    The Miniature Exoplanet Radial Velocity Array (MINERVA) is a U.S.-based observational facility dedicated to the discovery and characterization of exoplanets around a nearby sample of bright stars. MINERVA employs a robotic array of four 0.7-m telescopes outfitted for both high-resolution spectroscopy and photometry, and is designed for completely autonomous operation. The primary science program is a dedicated radial velocity survey and the secondary science objective is to obtain high-precision transit light curves. The modular design of the facility and the flexibility of our hardware allows for both science programs to be pursued simultaneously, while the robotic control software provides a robust and efficient means to carry out nightly observations. We describe the design of MINERVA, including major hardware components, software, and science goals. The telescopes and photometry cameras are characterized at our test facility on the Caltech campus in Pasadena, California, and their on-sky performance is validated. The design and simulated performance of the spectrograph is briefly discussed as we await its completion. New observations from our test facility demonstrate sub-mmag photometric precision of one of our radial velocity survey targets, and we present new transit observations and fits of WASP-52b—a known hot-Jupiter with an inflated radius and misaligned orbit. The process of relocating the MINERVA hardware to its final destination at the Fred Lawrence Whipple Observatory in southern Arizona has begun, and science operations are expected to commence in 2015.
  • Item
    No further evidence for a transiting inner companion to the hot Jupiter HATS-50b
    (Berlin : Wiley-VCH Verl., 2019) Mallonn, Matthias
    Most hot Jupiter exoplanets do not have a nearby planetary companion in their planetary system. One remarkable exception is the system of WASP-47 with an inner and outer nearby companion to a hot Jupiter, providing detailed constraints on its formation history. In this work, we follow up on a tentative photometric signal of a transiting inner companion to the hot Jupiter HATS-50 b. If confirmed, it would be the third case of a hot Jupiter with an inner companion. Sixty three hours of new ground-based photometry were employed to rule out this signal to about 96% confidence. The injection of artificial transit signals showed the data to be of sufficient quality to reveal the potential photometric feature at high significance. However, no transit signal was found. The discrete pattern of observing blocks leaves a slight chance that the transit was missed.
  • Item
    On the parameter refinement of inflated exoplanets with large radius uncertainty based on TESS observations
    (Berlin : Wiley-VCH Verl., 2022) Alexoudi, Xanthippi
    We revisited 10 known exoplanetary systems using publicly available data provided by the transiting exoplanet survey satellite (TESS). The sample presented in this work consists of short period transiting exoplanets, with inflated radii and large reported uncertainty on their planetary radii. The precise determination of these values is crucial in order to develop accurate evolutionary models and understand the inflation mechanisms of these systems. Aiming to evaluate the planetary radius measurement, we made use of the planet-to-star radii ratio, a quantity that can be measured during a transit event. We fit the obtained transit light curves of each target with a detrending model and a transit model. Furthermore, we used emcee, which is based on a Markov chain Monte Carlo approach, to assess the best fit posterior distributions of each system parameter of interest. We refined the planetary radius of WASP-140 b by approximately 12%, and we derived a better precision on its reported asymmetric radius uncertainty by approximately 86 and 67%. We also refined the orbital parameters of WASP-120 b by (Formula presented.). Moreover, using the high-cadence TESS datasets, we were able to solve a discrepancy in the literature, regarding the planetary radius of the exoplanet WASP-93 b. For all the other exoplanets in our sample, even though there is a tentative trend that planetary radii of (near-) grazing systems have been slightly overestimated in the literature, the planetary radius estimation and the orbital parameters were confirmed with independent observations from space, showing that TESS and ground-based observations are overall in good agreement.