Search Results

Now showing 1 - 5 of 5
  • Item
    The ECOMA 2007 campaign: Rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer
    (München : European Geopyhsical Union, 2009) Brattli, A.; Lie-Svendsen, Ø.; Svenes, K.; Hoppe, U.-P.; Strelnikova, I.; Rapp, M.; Latteck, R.; Torkar, K.; Gumbel, J.; Megner, L.; Baumgarten, G.
    The ECOMA series of rocket payloads use a set of aerosol particle, plasma, and optical instruments to study the properties of aerosol particles and their interaction with the ambient plasma environment in the polar mesopause region. In August 2007 the ECOMA-3 payload was launched into a region with Polar Mesosphere Summer Echoes (PMSE) and noctilucent clouds (NLC). An electron depletion was detected in a broad region between 83 and 88 km, coincident with enhanced density of negatively charged aerosol particles. We also find evidence for positive ion depletion in the same region. Charge neutrality requires that a population of positively charged particles smaller than 2 nm and with a density of at least 2×108 m−3 must also have been present in the layer, undetected by the instruments. A numerical model for the charging of aerosol particles and their interaction with the ambient plasma is used to analyse the results, showing that high aerosol particle densities are required in order to explain the observed ion density depletion. The model also shows that a very high photoionisation rate is required for the particles smaller than 2 nm to become positively charged, indicating that these may have a lower work function than pure water ice.
  • Item
    Model simulations of chemical effects of sprites in relation with observed HO2 enhancements over sprite-producing thunderstorms
    (Katlenburg-Lindau : European Geosciences Union, 2021) Winkler, Holger; Yamada, Takayoshi; Kasai, Yasuko; Berger, Uwe; Notholt, Justus
    Recently, measurements by the Superconducting Submillimeter-Wave Limb Emission Sounder (SMILES) satellite instrument have been presented which indicate an increase in mesospheric HO2 above sprite-producing thunderstorms. The aim of this paper is to compare these observations to model simulations of chemical sprite effects. A plasma chemistry model in combination with a vertical transport module was used to simulate the impact of a streamer discharge in the altitude range 70–80 km, corresponding to one of the observed sprite events. Additionally, a horizontal transport and dispersion model was used to simulate advection and expansion of the sprite air masses. The model simulations predict a production of hydrogen radicals mainly due to reactions of proton hydrates formed after the electrical discharge. The net effect is a conversion of water molecules into H+OH. This leads to increasing HO2 concentrations a few hours after the electric breakdown. Due to the modelled long-lasting increase in HO2 after a sprite discharge, an accumulation of HO2 produced by several sprites appears possible. However, the number of sprites needed to explain the observed HO2 enhancements is unrealistically large. At least for the lower measurement tangent heights, the production mechanism of HO2 predicted by the model might contribute to the observed enhancements.
  • Item
    Secondary charging effects due to icy dust particle impacts on rocket payloads
    (München : European Geopyhsical Union, 2012) Kassa, M.; Rapp, M.; Hartquist, T.W.; Havnes, O.
    We report measurements of dust currents obtained with a small probe and a larger probe during the flight of the ECOMA-4 rocket through the summer polar mesosphere. The payload included two small dust probes behind a larger dust probe located centrally at the front. For certain phases of the payload rotation, the current registered by one of the small dust probes was up to 2 times the current measured with the larger probe, even though the effective collection area of the larger probe was 4 times that of the small one. We analyze the phase dependence of the currents and their difference with a model based on the assumption that the small probe was hit by charged dust fragments produced in collisions of mesospheric dust with the payload body. Our results confirm earlier findings that secondary charge production in the collision of a noctilucent cloud/Polar Summer Mesospheric Echo (NLC/PMSE) dust particle with the payload body must be several orders of magnitude larger than might be expected from laboratory studies of collisions of pure ice particles with a variety of clean surfaces. An important consequence is that for some payload configurations, one should not assume that the current measured with a detector used to study mesospheric dust is simply proportional to the number density of ambient dust particles. The higher secondary charge production may be due to the NLC/PMSE particles containing multiple meteoric smoke particles.
  • Item
    A linear model for amplitude modulation of Langmuir waves in weak electron-beam plasma interaction
    (Göttingen : Copernicus, 2013) Baumgärtel, K.
    A simple linear approach to the phenomenon of amplitude modulation of Langmuir waves in weak beam plasma interaction is presented. During the short growth phase of the instability and within the longer period after saturation, the waves are described by their linear kinetic dispersion properties.The amplitude modulation appears as result of the beating of waves with different wavelengths and amplitudes that have grown from noise in the initial phase. The Langmuir wave fields are calculated via FFT (fast Fourier transform) technique. The resulting waveforms in temporal representation are quite similar to those observed by spacecraft.
  • Item
    Ion dynamics in electron beam-plasma interaction: Particle-in-cell simulations
    (Göttingen : Copernicus, 2014) Baumgärtel, K.
    Electron beam-plasma interaction including ions is studied by particle-in-cell (PIC) simulations using a one-dimensional, electrostatic code. Evidence for Langmuir wave decay is given for sufficiently energetic beams, as in previous Vlasov-Maxwell simulations. The mechanism for the generation of localized finite-amplitude ion density fluctuations is analyzed. Amplitude modulation due to interference between the beam-generated Langmuir waves causes random wave localization including strong transient spikes in field intensity which create bursty ion density structures via ponderomotive forces. More dense beams may quench the decay instability and generate low-frequency variations dominated by the wave number of the fastest growing Langmuir mode.