Search Results

Now showing 1 - 2 of 2
  • Item
    Anharmonic strong-coupling effects at the origin of the charge density wave in CsV3Sb5
    ([London] : Nature Publishing Group UK, 2024) He, Ge; Peis, Leander; Cuddy, Emma Frances; Zhao, Zhen; Li, Dong; Zhang, Yuhang; Stumberger, Romona; Moritz, Brian; Yang, Haitao; Gao, Hongjun; Devereaux, Thomas Peter; Hackl, Rudi
    The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 2Δmax/kBTCDW≈20, far beyond the prediction of mean-field theory. The analysis of the A1g and E2g phonons, including those emerging below TCDW, indicates strong phonon-phonon coupling, presumably mediated by a strong electron-phonon interaction. Similarly, the asymmetric Fano-type lineshape of the A1g amplitude mode suggests strong electron-phonon coupling below TCDW. The large electronic gap, the enhanced anharmonic phonon-phonon coupling, and the Fano shape of the amplitude mode combined are more supportive of a strong-coupling phonon-driven charge density wave transition than of a Fermi surface instability or an exotic mechanism in CsV3Sb5.
  • Item
    Role of hole confinement in the recombination properties of InGaN quantum structures
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Anikeeva, M.; Albrecht, M.; Mahler, F.; Tomm, J. W.; Lymperakis, L.; Chèze, C.; Calarco, R.; Neugebauer, J.; Schulz, T.
    We study the isolated contribution of hole localization for well-known charge carrier recombination properties observed in conventional, polar InGaN quantum wells (QWs). This involves the interplay of charge carrier localization and non-radiative transitions, a non-exponential decay of the emission and a specific temperature dependence of the emission, denoted as “s-shape”. We investigate two dimensional In0.25Ga0.75N QWs of single monolayer (ML) thickness, stacked in a superlattice with GaN barriers of 6, 12, 25 and 50 MLs. Our results are based on scanning and high-resolution transmission electron microscopy (STEM and HR-TEM), continuous-wave (CW) and time-resolved photoluminescence (TRPL) measurements as well as density functional theory (DFT) calculations. We show that the recombination processes in our structures are not affected by polarization fields and electron localization. Nevertheless, we observe all the aforementioned recombination properties typically found in standard polar InGaN quantum wells. Via decreasing the GaN barrier width to 6 MLs and below, the localization of holes in our QWs is strongly reduced. This enhances the influence of non-radiative recombination, resulting in a decreased lifetime of the emission, a weaker spectral dependence of the decay time and a reduced s-shape of the emission peak. These findings suggest that single exponential decay observed in non-polar QWs might be related to an increasing influence of non-radiative transitions.