Search Results

Now showing 1 - 3 of 3
  • Item
    Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization
    (Washington, DC : ACS Publ., 2015) Stroganov, Vladislav; Al-Hussein, Mahmoud; Sommer, Jens-Uwe; Janke, Andreas; Zakharchenko, Svetlana; Ionov, Leonid
    We discovered a new and unexpected effect of reversible actuation of ultrathin semicrystalline polymer films. The principle was demonstrated on the example of thin polycaprolactone-gelatin bilayer films. These films are unfolded at room temperature, fold at temperature above polycaprolactone melting point, and unfold again at room temperature. The actuation is based on reversible switching of the structure of the hydrophobic polymer (polycaprolactone) upon melting and crystallization. We hypothesize that the origin of this unexpected behavior is the orientation of polycaprolactone chains parallel to the surface of the film, which is retained even after melting and crystallization of the polymer or the “crystallization memory effect”. In this way, the crystallization generates a directed force, which causes bending of the film. We used this effect for the design of new generation of fully biodegradable thermoresponsive polymeric actuators, which are highly desirable for bionano-technological applications such as reversible encapsulation of cells and design of swimmers.
  • Item
    Biadhesive Peptides for Assembling Stainless Steel and Compound Loaded Micro-Containers
    (Weinheim : Wiley-VCH, 2019) Apitius, Lina; Buschmann, Sven; Bergs, Christian; Schönauer, David; Jakob, Felix; Pich, Andrij; Schwaneberg, Ulrich
    Biadhesive peptides (peptesives) are an attractive tool for assembling two chemically different materials—for example, stainless steel and polycaprolactone (PCL). Stainless steel is used in medical stents and PCL is used as a biodegradable polymer for fabrication of tissue growth scaffolds and drug delivering micro-containers. Biadhesive peptides are composed of two domains (e.g., dermaseptin S1 and LCI) with different material-binding properties that are separated through a stiff peptide-spacer. The peptesive dermaseptin S1-domain Z-LCI immobilizes antibiotic-loaded PCL micro-containers on stainless steel surfaces. Immobilization is visualized by microscopy and field emission scanning electron microscopy analysis and released antibiotic from the micro-containers is confirmed through growth inhibition of Escherichia coli cells.
  • Item
    Preclinical Testing of New Hydrogel Materials for Cartilage Repair: Overcoming Fixation Issues in a Large Animal Model
    (New York, NY [u.a.] : Hindawi Publ. Corp., 2021) Lotz, Benedict; Bothe, Friederike; Deubel, Anne-Kathrin; Hesse, Eliane; Renz, Yvonne; Werner, Carsten; Schäfer, Simone; Böck, Thomas; Groll, Jürgen; von Rechenberg, Brigitte; Richter, Wiltrud; Hagmann, Sebastien
    Reinforced hydrogels represent a promising strategy for tissue engineering of articular cartilage. They can recreate mechanical and biological characteristics of native articular cartilage and promote cartilage regeneration in combination with mesenchymal stromal cells. One of the limitations of in vivo models for testing the outcome of tissue engineering approaches is implant fixation. The high mechanical stress within the knee joint, as well as the concave and convex cartilage surfaces, makes fixation of reinforced hydrogel challenging. Methods. Different fixation methods for full-thickness chondral defects in minipigs such as fibrin glue, BioGlue®, covering, and direct suturing of nonenforced and enforced constructs were compared. Because of insufficient fixation in chondral defects, superficial osteochondral defects in the femoral trochlea, as well as the femoral condyle, were examined using press-fit fixation. Two different hydrogels (starPEG and PAGE) were compared by 3D-micro-CT (μCT) analysis as well as histological analysis. Results. Our results showed fixation of below 50% for all methods in chondral defects. A superficial osteochondral defect of 1 mm depth was necessary for long-term fixation of a polycaprolactone (PCL)-reinforced hydrogel construct. Press-fit fixation seems to be adapted for a reliable fixation of 95% without confounding effects of glue or suture material. Despite the good integration of our constructs, especially in the starPEG group, visible bone lysis was detected in micro-CT analysis. There was no significant difference between the two hydrogels (starPEG and PAGE) and empty control defects regarding regeneration tissue and cell integration. However, in the starPEG group, more cell-containing hydrogel fragments were found within the defect area. Conclusion. Press-fit fixation in a superficial osteochondral defect in the medial trochlear groove of adult minipigs is a promising fixation method for reinforced hydrogels. To avoid bone lysis, future approaches should focus on multilayered constructs recreating the zonal cartilage as well as the calcified cartilage and the subchondral bone plate.