Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

When Ultimate Adhesive Mechanism Meets Ultimate Anti‐Fouling Surfaces - Polydopamine Versus SLIPS: Which One Prevails?

2020, Prieto-López, Lizbeth Ofelia, Herbeck-Engel, Petra, Yang, Li, Wu, Qian, Li, Juntang, Cui, Jiaxi

What happens when the extremely adhesive and versatile chemistry of polydopamine (PDA) is in contact with the extremely slippery surfaces known as slippery liquid‐infused porous substrates (SLIPS)? Inspired by the pitcher plant, SLIPS possess excellent repellence against a variety of complex liquids and have been proposed as promising antifouling surfaces because of their successful performance even in marine environments. In the counterpart, inspired by the adhesive proteins enabling the strong adhesion of mussels to multiple substrates, PDA has been extensively studied for its ability to adhere on nearly every type of substrate. The interaction between various SLIPS systems and the highly fouling medium from the oxidative polymerization of dopamine is explored here. A PDA coating is observed on all the SLIPS evaluated, modifying their hydrophobicity in most cases. In‐depth study of silicone‐based SLIPS shows that hydrophobicity of PDA coated SLIPS partially recovers with time due to percolation of the lubricant through the coating. “Strongly” bound PDA species are attributed to the formation of dopamine‐polydimethylsiloxane species on the crosslinked matrix, rendering a coating that withstands repeated washing steps in various solvents including water, hexane, and toluene. The results not only satisfy scientific curiosity but also imply a strategy to modify/bond SLIPS.

Loading...
Thumbnail Image
Item

A New Route to Highly Stretchable and Soft Inorganic–Organic Hybrid Elastomers Using Polydimethylsiloxane as Crosslinker of Epoxidized Natural Rubber

2021, Banerjee, Shib Shankar, Banerjee, Susanta, Wießner, Sven, Janke, Andreas, Heinrich, Gert, Das, Amit

Sulfur or peroxide crosslinking is the most common and conventional method to develop elastomeric materials. A new approach to crosslink epoxidized natural rubber (ENR) by aminopropyl terminated polydimethylsiloxane (AT-PDMS) is described, intending to develop a new kind of hybrid organic–inorganic elastomers. The curing reaction is accelerated by using hydroquinone as a catalyst. The formation of the hybrid structure is evident from the appearance of two glass transition temperatures, at −1 and −120 °C, for the ENR and PDMS phases, respectively. The curing reaction is found to be of first order with respect to amine concentration with the estimated activation energy of ≈62 kJ mol−1. Comparing the mechanical properties to a typical ENR-sulfur system leads to the conclusion that the ENR/AT-PDMS hybrid structure is highly stretchable and soft, as demonstrated by its relatively higher strain at failure (up to ≈630%), and lower hardness and modulus values. The higher stretchability and soft nature of the material are achieved by introducing flexible PDMS chains during the curing process resulting to a hybrid elastomer networks. This kind of soft but robust materials can find several applications in diverse fields, such as soft robotics, flexible, and stretchable electronics.

Loading...
Thumbnail Image
Item

EndOxy: Mid-term stability and shear stress resistance of endothelial cells on PDMS gas exchange membranes

2020, Hellmann, Ariane, Klein, Sarah, Hesselmann, Felix, Djeljadini, Suzana, Schmitz-Rode, Thomas, Jockenhoevel, Stefan, Cornelissen, Christian G., Thiebes, Anja Lena

Endothelialized oxygenator devices (EndOxy) with a physiological, nonthrombogenic, and anti-inflammatory surface offer the potential to overcome current shortcomings of conventional extracorporeal membrane oxygenation such as complications like thromboembolism and bleeding that deteriorate adequate long-term hemocompatibility. The approach of endothelialization of gas exchange membranes, and thus the formation of a nonthrombogenic and anti-inflammatory surface, is promising. In this study, we investigated the mid-term shear stress resistance as well as gas transfer rates and cell densities of endothelial cells seeded on RGD-conjugated polydimethylsiloxane (RGD-PDMS) gas exchange membranes under dynamic conditions. Human umbilical vein endothelial cells were seeded on RGD-PDMS and exposed to defined shear stresses in a microfluidic bioreactor. Endothelial cell morphology was assessed by bright field microscopy and immunocytochemistry. Furthermore, gas transfer measurement of blank, RGD-conjugated, and endothelialized PDMS oxygenator membranes was performed. RGD-PDMS gas exchange membranes proved suitable for the dynamic culture of endothelial cells for up to 21 days at a wall shear stress of 2.9 dyn/cm2. Furthermore, the cells resisted increased wall shear stresses up to 8.6 dyn/cm2 after a previous dynamic preculture of each one hour at 2.9 dyn/cm2 and 5.7 dyn/cm2. Also, after a longer dynamic preculture of three days at 2.9 dyn/cm2 and one hour at 5.7 dyn/cm2, increased wall shear stresses of 8.6 dyn/cm2 were tolerated by the cells and cell integrity could be remained. Gas transfer (GT) tests revealed that neither RGD conjugation nor endothelialization of RGD-PDMS significantly decrease the gas transfer rates of the membranes during short-term trials. Gas transfer rates are stable for at least 72 hours of dynamic cultivation of endothelial cells. Immunocytochemistry showed that the cell layer stained positive for typical endothelial cell markers CD31 and von Willebrand factor (VWF) after all trials. Cell density of EC on RGD-PDMS increased between 3 and 21 days of dynamic culture. In this study, we show the suitability of RGD-PDMS membranes for flow resistant endothelialization of gas-permeable membranes, demonstrating the feasibility of this approach for a biohybrid lung. © 2020 The Authors. Artificial Organs published by International Center for Artificial Organ and Transplantation (ICAOT) and Wiley Periodicals LLC