Search Results

Now showing 1 - 2 of 2
  • Item
    Hydrogenation of Polyesters to Polyether Polyols
    (Weinheim : Wiley-VCH, 2019) Stadler, Bernhard M.; Hinze, Sandra; Tin, Sergey; de Vries, Johannes G.
    The amount of plastic waste is continuously increasing. Besides conventional recycling, one solution to deal with this problem could be to use this waste as a resource for novel materials. In this study, polyesters are hydrogenated to give polyether polyols by using in situ-generated Ru-Triphos catalysts in combination with Lewis acids. The choice of Lewis acid and its concentration relative to the ruthenium catalyst are found to determine the selectivity of the reaction. Monitoring of the molecular weight during the reaction confirms a sequential mechanism in which the diols that are formed by hydrogenation are etherified to the polyethers. To probe the applicability of this tandem hydrogenation etherification approach, a range of polyester substrates is investigated. The oligoether products that form in these reactions have the chain lengths that are appropriate for application in the adhesives and coatings industries. This strategy makes polyether polyols accessible that are otherwise difficult to obtain from conventional fossil-based feedstocks. © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
  • Item
    Phenazine Radical Cations as Efficient Homogeneous and Heterogeneous Catalysts for the Cross-Dehydrogenative Aza-Henry Reaction
    (New York, NY : Wiley-VCH, 2020) Unglaube, Felix; Hünemörder, Paul; Guo, Xuewen; Chen, Zixu; Wang, Dengxu; Mejía, Esteban
    The redox activity of molecular phenazine catalysts has been previously exploited for aerobic oxidative amine homo- and cross-coupling reactions. In this contribution, we have extended the reaction scope of this novel type of organocatalyst and used them in the cross-dehydrogenative aza-Henry coupling of isoquinolines with nitromethane under aerobic conditions. Additionally, we have designed and prepared a novel porous organic polymer by cross-linking of tetrakis(4-bromophenyl)silane and dihydrophenazine through Pd-catalyzed Buchwald-Hartwig cross-coupling. This new type of heterogeneous catalyst, apart from being robust and easily reusable, also showed outstanding catalytic activities and improved selectivity compared to its molecular counterpart. A plausible reaction mechanism was proposed based on spectroscopic and kinetic measurements. © 2020 The Authors. Helvetica Chimica Acta published by Wiley-VHCA AG, Zurich, Switzerland