Search Results

Now showing 1 - 10 of 18
Loading...
Thumbnail Image
Item

Formation and growth of nucleated particles into cloud condensation nuclei: Model-measurement comparison

2013, Westervelt, D.M., Pierce, J.R., Riipinen, I., Trivitayanurak, W., Hamed, A., Kulmala, M., Laaksonen, A., Decesari, S., Adams, P.J.

Aerosol nucleation occurs frequently in the atmosphere and is an important source of particle number. Observations suggest that nucleated particles are capable of growing to sufficiently large sizes that they act as cloud condensation nuclei (CCN), but some global models have reported that CCN concentrations are only modestly sensitive to large changes in nucleation rates. Here we present a novel approach for using long-term size distribution observations to evaluate a global aerosol model's ability to predict formation rates of CCN from nucleation and growth events. We derive from observations at five locations nucleation-relevant metrics such as nucleation rate of particles at diameter of 3 nm (J3), diameter growth rate (GR), particle survival probability (SP), condensation and coagulation sinks, and CCN formation rate (J100). These quantities are also derived for a global microphysical model, GEOS-Chem-TOMAS, and compared to the observations on a daily basis. Using GEOS-Chem-TOMAS, we simulate nucleation events predicted by ternary (with a 10−5 tuning factor) or activation nucleation over one year and find that the model slightly understates the observed annual-average CCN formation mostly due to bias in the nucleation rate predictions, but by no more than 50% in the ternary simulations. At the two locations expected to be most impacted by large-scale regional nucleation, Hyytiälä and San Pietro Capofiume, predicted annual-average CCN formation rates are within 34 and 2% of the observations, respectively. Model-predicted annual-average growth rates are within 25% across all sites but also show a slight tendency to underestimate the observations, at least in the ternary nucleation simulations. On days that the growing nucleation mode reaches 100 nm, median single-day survival probabilities to 100 nm for the model and measurements range from less than 1–6% across the five locations we considered; however, this does not include particles that may eventually grow to 100 nm after the first day. This detailed exploration of new particle formation and growth dynamics adds support to the use of global models as tools for assessing the contribution of microphysical processes such as nucleation to the total number and CCN budget.

Loading...
Thumbnail Image
Item

Local difference measures between complex networks for dynamical system model evaluation

2015, Lange, S., Donges, J.F., Volkholz, J., Kurths, J.

Loading...
Thumbnail Image
Item

Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna

2018, Chen, Y., Zopf, M., Keil, R., Ding, F., Schmidt, O.G.

Many quantum photonic technologies require the efficient generation of entangled pairs of photons, but to date there have been few ways to produce them reliably. Sources based on parametric down conversion operate at very low efficiency per pulse due to the probabilistic generation process. Semiconductor quantum dots can emit single pairs of entangled photons deterministically but they fall short due to the extremely low-extraction efficiency. Strategies for extracting single photons from quantum dots, such as embedding them in narrowband optical cavities, are difficult to translate to entangled photons. Here, we build a broadband optical antenna with an extraction efficiency of 65% ± 4% and demonstrate a highly-efficient entangled-photon source by collecting strongly entangled photons (fidelity of 0.9) at a pair efficiency of 0.372 ± 0.002 per pulse. The high brightness achieved by our source represents a step forward in the development of optical quantum technologies.

Loading...
Thumbnail Image
Item

Analysing dynamical behavior of cellular networks via stochastic bifurcations

2011, Zakharova, A., Kurths, J., Vadivasova, T., Koseska, A.

The dynamical structure of genetic networks determines the occurrence of various biological mechanisms, such as cellular differentiation. However, the question of how cellular diversity evolves in relation to the inherent stochasticity and intercellular communication remains still to be understood. Here, we define a concept of stochastic bifurcations suitable to investigate the dynamical structure of genetic networks, and show that under stochastic influence, the expression of given proteins of interest is defined via the probability distribution of the phase variable, representing one of the genes constituting the system. Moreover, we show that under changing stochastic conditions, the probabilities of expressing certain concentration values are different, leading to different functionality of the cells, and thus to differentiation of the cells in the various types.

Loading...
Thumbnail Image
Item

A complete representation of uncertainties in layer-counted paleoclimatic archives

2017, Boers, Niklas, Goswami, Bedartha, Ghil, Michael

Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records – such as ice cores, sediments, corals, or tree rings – as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5–52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.

Loading...
Thumbnail Image
Item

Molecular movie of ultrafast coherent rotational dynamics of OCS

2019, Karamatskos, Evangelos T., Raabe, Sebastian, Mullins, Terry, Trabattoni, Andrea, Stammer, Philipp, Goldsztejn, Gildas, Johansen, Rasmus R., Długołecki, Karol, Stapelfeldt, Henrik, Vrakking, Marc J. J., Trippel, Sebastian, Rouzée, Arnaud, Küpper, Jochen

Recording molecular movies on ultrafast timescales has been a longstanding goal for unravelling detailed information about molecular dynamics. Here we present the direct experimental recording of very-high-resolution and -fidelity molecular movies over more than one-and-a-half periods of the laser-induced rotational dynamics of carbonylsulfide (OCS) molecules. Utilising the combination of single quantum-state selection and an optimised two-pulse sequence to create a tailored rotational wavepacket, an unprecedented degree of field-free alignment, 〈cos2θ2D〉 = 0.96 (〈cos2θ〉 = 0.94) is achieved, exceeding the theoretical limit for single-pulse alignment. The very rich experimentally observed quantum dynamics is fully recovered by the angular probability distribution obtained from solutions of the time-dependent Schrödinger equation with parameters refined against the experiment. The populations and phases of rotational states in the retrieved time-dependent three-dimensional wavepacket rationalises the observed very high degree of alignment.

Loading...
Thumbnail Image
Item

Wafer-scale nanofabrication of telecom single-photon emitters in silicon

2022, Hollenbach, Michael, Klingner, Nico, Jagtap, Nagesh S., Bischoff, Lothar, Fowley, Ciarán, Kentsch, Ulrich, Hlawacek, Gregor, Erbe, Artur, Abrosimov, Nikolay V., Helm, Manfred, Berencén, Yonder, Astakhov, Georgy V.

A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm.

Loading...
Thumbnail Image
Item

Assessment and Public Reporting of Geothermal Resources in Germany: Review and Outlook

2018, Agemar, Thorsten, Weber, Josef, Moeck, Inga S.

Any geothermal resource assessment requires consistent and widely accepted terminology, methods, and reporting schemes that facilitate the comparison of geothermal resource estimates. This paper reviews common resource assessment methods, as well as reporting codes and terminology. Based on a rigorous analysis of the portrayed concepts and methods, it discusses the appropriateness of the existing reporting codes for sustainable utilization of geothermal resources in Germany. Since the last quantitative geothermal resource assessment in Germany was done 15 years ago, a revised report is overdue. Unlike fossil energy commodities, geothermal energy replenishes naturally and heat recuperation increases in created heat sinks. This replenishment process offers the opportunity for sustainable reservoir management in the case of moderate production rates or cyclic operation. Existing reporting codes, however, regard geothermal resources in a similar way to fossil resources or focus too much on field development rather than on the whole assessment process. In order to emphasize the renewability of geothermal energy, we propose the reporting of geothermal capacities (per doublet or per km2) instead of recoverable heat energy which depends very much on project lifetime and other factors. As a first step, a new classification scheme for geothermal resources and reserves is outlined.

Loading...
Thumbnail Image
Item

Comparison of storm damage functions and their performance

2015, Prahl, B.F., Rybski, D., Burghoff, O., Kropp, J.P.

Loading...
Thumbnail Image
Item

Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size

2012, Zhu, W., Fang, J.-A., Tang, Y., Zhang, W., Du, W.

Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.