Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Controlling Optical and Catalytic Activity of Genetically Engineered Proteins by Ultrasound

2021, Zhou, Yu, Huo, Shuaidong, Loznik, Mark, Göstl, Robert, Boersma, Arnold J., Herrmann, Andreas

Ultrasound (US) produces cavitation-induced mechanical forces stretching and breaking polymer chains in solution. This type of polymer mechanochemistry is widely used for synthetic polymers, but not biomacromolecules, even though US is biocompatible and commonly used for medical therapy as well as in vivo imaging. The ability to control protein activity by US would thus be a major stepping-stone for these disciplines. Here, we provide the first examples of selective protein activation and deactivation by means of US. Using GFP as a model system, we engineer US sensitivity into proteins by design. The incorporation of long and highly charged domains enables the efficient transfer of force to the protein structure. We then use this principle to activate the catalytic activity of trypsin by inducing the release of its inhibitor. We expect that this concept to switch “on” and “off” protein activity by US will serve as a blueprint to remotely control other bioactive molecules. © 2020 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH

Loading...
Thumbnail Image
Item

Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns

2020, Cui, Haiyang, Cao, Hao, Cai, Haiying, Jaeger, Karl-Erich, Davari, Mehdi D., Schwaneberg, Ulrich

A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Loading...
Thumbnail Image
Item

Enhancing Robustness of Sortase A by Loop Engineering and Backbone Cyclization

2020, Zou, Zhi, Mate, Diana M., Nöth, Maximilian, Jakob, Felix, Schwaneberg, Ulrich

Staphylococcus aureus sortase A (SaSrtA) is widely used for site-specific protein modifications, but it lacks the robustness for performing bioconjugation reactions at elevated temperatures or in presence of denaturing agents. Loop engineering and subsequent head-to-tail backbone cyclization of SaSrtA yielded the cyclized variant CyM6 that has a 7.5 °C increased melting temperature and up to 4.6-fold increased resistance towards denaturants when compared to the parent rM4. CyM6 gained up to 2.6-fold (vs. parent rM4) yield of conjugate in ligation of peptide and primary amine under denaturing conditions. © 2020 The Authors. Published by Wiley-VCH GmbH