Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Global Community Guidelines for Documenting, Sharing, and Reusing Quality Information of Individual Digital Datasets

2022, Peng, Ge, Lacagnina, Carlo, Downs, Robert R., Ganske, Anette, Ramapriyan, Hampapuram K., Ivánová, Ivana, Wyborn, Lesley, Jones, Dave, Bastin, Lucy, Shie, Chung-lin, Moroni, David F.

Open-source science builds on open and free resources that include data, metadata, software, and workflows. Informed decisions on whether and how to (re)use digital datasets are dependent on an understanding about the quality of the underpinning data and relevant information. However, quality information, being difficult to curate and often context specific, is currently not readily available for sharing within and across disciplines. To help address this challenge and promote the creation and (re)use of freely and openly shared information about the quality of individual datasets, members of several groups around the world have undertaken an effort to develop international community guidelines with practical recommendations for the Earth science community, collaborating with international domain experts. The guidelines were inspired by the guiding principles of being findable, accessible, interoperable, and reusable (FAIR). Use of the FAIR dataset quality information guidelines is intended to help stakeholders, such as scientific data centers, digital data repositories, and producers, publishers, stewards and managers of data, to: i) capture, describe, and represent quality information of their datasets in a manner that is consistent with the FAIR Guiding Principles; ii) allow for the maximum discovery, trust, sharing, and reuse of their datasets; and iii) enable international access to and integration of dataset quality information. This article describes the processes that developed the guidelines that are aligned with the FAIR principles, presents a generic quality assessment workflow, describes the guidelines for preparing and disseminating dataset quality information, and outlines a path forward to improve their disciplinary diversity.

Loading...
Thumbnail Image
Item

Open Research Knowledge Graph

2024-05-07, Auer, Sören, Ilangovan, Vinodh, Stocker, Markus, Tiwari, Sanju, Vogt, Lars, Bernard-Verdier, Maud, D'Souza, Jennifer, Fadel , Kamel, Farfar, Kheir Eddine, Göpfert , Jan, Haris , Muhammad, Heger, Tina, Hussein, Hassan, Jaradeh, Yaser, Jeschke, Jonathan M., Jiomekong , Azanzi, Kabongo, Salomon, Karras, Oliver, Kuckertz, Patrick, Kullamann, Felix, Martin, Emily A., Oelen, Allard, Perez-Alvarez, Ricardo, Prinz, Manuel, Snyder, Lauren D., Stolten, Detlef, Weinand, Jann M.

As we mark the fifth anniversary of the alpha release of the Open Research Knowledge Graph (ORKG), it is both timely and exhilarating to celebrate the significant strides made in this pioneering project. We designed this book as a tribute to the evolution and achievements of the ORKG and as a practical guide encapsulating its essence in a form that resonates with both the general reader and the specialist. The ORKG has opened a new era in the way scholarly knowledge is curated, managed, and disseminated. By transforming vast arrays of unstructured narrative text into structured, machine-processable knowledge, the ORKG has emerged as an essential service with sophisticated functionalities. Over the past five years, our team has developed the ORKG into a vibrant platform that enhances the accessibility and visibility of scientific research. This book serves as a non-technical guide and a comprehensive reference for new and existing users that outlines the ORKG’s approach, technologies, and its role in revolutionizing scholarly communication. By elucidating how the ORKG facilitates the collection, enhancement, and sharing of knowledge, we invite readers to appreciate the value and potential of this groundbreaking digital tool presented in a tangible form. Looking ahead, we are thrilled to announce the upcoming unveiling of promising new features and tools at the fifth-year celebration of the ORKG’s alpha release. These innovations are set to redefine the boundaries of machine assistance enabled by research knowledge graphs. Among these enhancements, you can expect more intuitive interfaces that simplify the user experience, and enhanced machine learning models that improve the automation and accuracy of data curation. We also included a glossary tailored to clarifying key terms and concepts associated with the ORKG to ensure that all readers, regardless of their technical background, can fully engage with and understand the content presented. This book transcends the boundaries of a typical technical report. We crafted this as an inspiration for future applications, a testament to the ongoing evolution in scholarly communication that invites further collaboration and innovation. Let this book serve as both your guide and invitation to explore the ORKG as it continues to grow and shape the landscape of scientific inquiry and communication.

Loading...
Thumbnail Image
Item

Machine Learning for Determining Interactions between Air Pollutants and Environmental Parameters in Three Cities of Iran

2022, Rad, Abdullah Kaviani, Shamshiri, Redmond R., Naghipour, Armin, Razmi, Seraj-Odeen, Shariati, Mohsen, Golkar, Foroogh, Balasundram, Siva K.

Air pollution, as one of the most significant environmental challenges, has adversely affected the global economy, human health, and ecosystems. Consequently, comprehensive research is being conducted to provide solutions to air quality management. Recently, it has been demonstrated that environmental parameters, including temperature, relative humidity, wind speed, air pressure, and vegetation, interact with air pollutants, such as particulate matter (PM), NO2, SO2, O3, and CO, contributing to frameworks for forecasting air quality. The objective of the present study is to explore these interactions in three Iranian metropolises of Tehran, Tabriz, and Shiraz from 2015 to 2019 and develop a machine learning-based model to predict daily air pollution. Three distinct assessment criteria were used to assess the proposed XGBoost model, including R squared (R2), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE). Preliminary results showed that although air pollutants were significantly associated with meteorological factors and vegetation, the formulated model had low accuracy in predicting (R2PM2.5 = 0.36, R2PM10 = 0.27, R2NO2 = 0.46, R2SO2 = 0.41, R2O3 = 0.52, and R2CO = 0.38). Accordingly, future studies should consider more variables, including emission data from manufactories and traffic, as well as sunlight and wind direction. It is also suggested that strategies be applied to minimize the lack of observational data by considering second-and third-order interactions between parameters, increasing the number of simultaneous air pollution and meteorological monitoring stations, as well as hybrid machine learning models based on proximal and satellite data.

Loading...
Thumbnail Image
Item

Sampling techniques applicable for the characterization of the quality of self pulsations in semiconductor lasers

2002, Radziunas, Mindaugas

The aim of the presented report is to demonstrate how the sampling techniques can be used to characterize the quality of self pulsations in a multi-section semiconductor laser and the synchronization of self pulsations with an optical or electrical periodically modulated signal. The developed tools are described and some examples are given.