Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

The Global Aerosol Synthesis and Science Project (GASSP): Measurements and Modeling to Reduce Uncertainty

2017, Reddington, C.L., Carslaw, K.S., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Browse, J., Pringle, K.J., Lee, L.A., Yoshioka, M., Johnson, J.S., Regayre, L.A., Spracklen, D.V., Mann, G.W., Clarke, A., Hermann, M., Henning, S., Wex, H., Kristensen, T.B., Leaitch, W.R., Pöschl, U., Rose, D., Andreae, M.O., Schmale, J., Kondo, Y., Oshima, N., Schwarz, J.P., Nenes, A., Anderson, B., Roberts, G.C., Snider, J.R., Leck, C., Quinn, P.K., Chi, X., Ding, A., Jimenez, J.L., Zhang, Q.

The largest uncertainty in the historical radiative forcing of climate is caused by changes in aerosol particles due to anthropogenic activity. Sophisticated aerosol microphysics processes have been included in many climate models in an effort to reduce the uncertainty. However, the models are very challenging to evaluate and constrain because they require extensive in situ measurements of the particle size distribution, number concentration, and chemical composition that are not available from global satellite observations. The Global Aerosol Synthesis and Science Project (GASSP) aims to improve the robustness of global aerosol models by combining new methodologies for quantifying model uncertainty, to create an extensive global dataset of aerosol in situ microphysical and chemical measurements, and to develop new ways to assess the uncertainty associated with comparing sparse point measurements with low-resolution models. GASSP has assembled over 45,000 hours of measurements from ships and aircraft as well as data from over 350 ground stations. The measurements have been harmonized into a standardized format that is easily used by modelers and nonspecialist users. Available measurements are extensive, but they are biased to polluted regions of the Northern Hemisphere, leaving large pristine regions and many continental areas poorly sampled. The aerosol radiative forcing uncertainty can be reduced using a rigorous model–data synthesis approach. Nevertheless, our research highlights significant remaining challenges because of the difficulty of constraining many interwoven model uncertainties simultaneously. Although the physical realism of global aerosol models still needs to be improved, the uncertainty in aerosol radiative forcing will be reduced most effectively by systematically and rigorously constraining the models using extensive syntheses of measurements.

Loading...
Thumbnail Image
Item

A Practical Guide to the Automated Analysis of Vascular Growth, Maturation and Injury in the Brain

2020, Rust, Ruslan, Kirabali, Tunahan, Grönnert, Lisa, Dogancay, Berre, Limasale, Yanuar D.P., Meinhardt, Andrea, Werner, Carsten, Laviña, Bàrbara, Kulic, Luka, Nitsch, Roger M., Tackenberg, Christian, Schwab, Martin E.

The distinct organization of the brain’s vasculature ensures the adequate delivery of oxygen and nutrients during development and adulthood. Acute and chronic pathological changes of the vascular system have been implicated in many neurological disorders including stroke and dementia. Here, we describe a fast, automated method that allows the highly reproducible, quantitative assessment of distinct vascular parameters and their changes based on the open source software Fiji (ImageJ). In particular, we developed a practical guide to reliably measure aspects of growth, repair and maturation of the brain’s vasculature during development and neurovascular disease in mice and humans. The script can be used to assess the effects of different external factors including pharmacological treatments or disease states. Moreover, the procedure is expandable to blood vessels of other organs and vascular in vitro models. © Copyright © 2020 Rust, Kirabali, Grönnert, Dogancay, Limasale, Meinhardt, Werner, Laviña, Kulic, Nitsch, Tackenberg and Schwab.

Loading...
Thumbnail Image
Item

Current strategies and findings in clinically relevant post-translational modification-specific proteomics

2015, Pagel, Oliver, Loroch, Stefan, Sickmann, Albert, Zahedi, René P.

Mass spectrometry-based proteomics has considerably extended our knowledge about the occurrence and dynamics of protein post-translational modifications (PTMs). So far, quantitative proteomics has been mainly used to study PTM regulation in cell culture models, providing new insights into the role of aberrant PTM patterns in human disease. However, continuous technological and methodical developments have paved the way for an increasing number of PTM-specific proteomic studies using clinical samples, often limited in sample amount. Thus, quantitative proteomics holds a great potential to discover, validate and accurately quantify biomarkers in body fluids and primary tissues. A major effort will be to improve the complete integration of robust but sensitive proteomics technology to clinical environments. Here, we discuss PTMs that are relevant for clinical research, with a focus on phosphorylation, glycosylation and proteolytic cleavage; furthermore, we give an overview on the current developments and novel findings in mass spectrometry-based PTM research.