Search Results

Now showing 1 - 4 of 4
  • Item
    Thermal activation of catalytic microjets in blood samples using microfluidic chips
    (Cambridge : Royal Society of Chemistry, 2013) Restrepo-Pérez, Laura; Soler, Lluís; Martínez-Cisneros, Cynthia S.; Sanchez, Samuel; Schmidt, Oliver G.
    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.
  • Item
    Uniaxial stress flips the natural quantization axis of a quantum dot for integrated quantum photonics
    (London : Nature Publishing Group, 2018) Yuan, X.; Weyhausen-Brinkmann, F.; Martín-Sánchez, J.; Piredda, G.; Křápek, V.; Huo, Y.; Huang, H.; Schimpf, C.; Schmidt, O.G.; Edlinger, J.; Bester, G.; Trotta, R.; Rastelli, A.
    The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in-plane uniaxial stress. By using piezoelectric strain-actuators featuring strain amplification, we study the evolution of the selection rules and excitonic fine structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry-properties of the system. The experimental and computational results suggest that uniaxial stress may be the right tool to obtain quantum-light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.
  • Item
    Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method
    (London : Nature Publishing Group, 2019) Nečas, D.; Klapetek, P.; Neu, V.; Havlíček, M.; Puttock, R.; Kazakova, O.; Hu, X.; Zajíčková, L.
    Magnetic force microscopy has unsurpassed capabilities in analysis of nanoscale and microscale magnetic samples and devices. Similar to other Scanning Probe Microscopy techniques, quantitative analysis remains a challenge. Despite large theoretical and practical progress in this area, present methods are seldom used due to their complexity and lack of systematic understanding of related uncertainties and recommended best practice. Use of the Tip Transfer Function (TTF) is a key concept in making Magnetic Force Microscopy measurements quantitative. We present a numerical study of several aspects of TTF reconstruction using multilayer samples with perpendicular magnetisation. We address the choice of numerical approach, impact of non-periodicity and windowing, suitable conventions for data normalisation and units, criteria for choice of regularisation parameter and experimental effects observed in real measurements. We present a simple regularisation parameter selection method based on TTF width and verify this approach via numerical experiments. Examples of TTF estimation are shown on both 2D and 3D experimental datasets. We give recommendations on best practices for robust TTF estimation, including the choice of windowing function, measurement strategy and dealing with experimental error sources. A method for synthetic MFM data generation, suitable for large scale numerical experiments is also presented.
  • Item
    Verbundprojekt: Batterie – Stationär in Sachsen (BaSta), Teilvorhaben: Leibniz IFW : Schlussbericht ; Berichtszeitraum: 01.11.2012-30.04.2016
    (Hannover : Technische Informationsbibliothek (TIB), 2016) Eckert, Jürgen; Giebeler, Lars
    Die Entwicklung und Umsetzung umfasst eines völlig neuartigen Batteriekonzeptes, der die Vorteile der bisherigen Na-S-Hochtemperaturbatterien (z.B. niedrige Kosten und hohe Verfügbarkeit der notwendigen Rohstoffe) mit der Performance moderner Lithium-Ionenbatterien, jedoch auf Na-Ionenbasis, im Niedertemperaturbereich verknüpft. Dazu müssen neue Elektroden- bzw. Separatormaterialien mit vorteilhafter Interaktion und Degradationsstabilität in verschiedenen neuartigen Elektrolyten entwickelt werden. Darüber hinaus werden geeignete Verfahren zur Herstellung und Fertigung dieser Komponenten zu Niedertemperatur-Na-S-Batterien generiert. Die Ziele sollen durch die außerordentlich enge Vernetzung mehrerer Professuren der TU Dresden mit verschiedenen Instituten der Fraunhofer Gesellschaft, dem Leibniz IFW Dresden e.V. und der TU Bergakademie Freiberg erreicht werden. Der Arbeitsplan sieht eine 'bottom up' Strategie von der Materialentwicklung und Charakterisierung über die Werkstoffprozessierung hin zur Systementwicklung und -charakterisierung vor. Die universitären Einrichtungen arbeiten dabei vorwiegend grundlagenorientiert auf dem Gebiet der Materialentwicklung für einen völlig neuen Batterietyp. Die dabei gewonnenen Erkenntnisse werden unmittelbar in die anwendungsorientierte Forschung überführt. Entscheidend ist die interaktive Zusammenarbeit zu allen Zeitpunkten und auf allen Ebenen des Gesamtvorhabens.