Search Results

Now showing 1 - 2 of 2
  • Item
    Surface effects of vapour-liquid-solid driven Bi surface droplets formed during molecular-beam-epitaxy of GaAsBi
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Steele, J.A.; Lewis, R.A.; Horvat, J.; Nancarrow, M.J.B.; Henini, M.; Fan, D.; Mazur, Y.I.; Schmidbauer, M.; Ware, M.E.; Yu, S.-Q.; Salamo, G.J.
    Herein we investigate a (001)-oriented GaAs1−xBix/GaAs structure possessing Bi surface droplets capable of catalysing the formation of nanostructures during Bi-rich growth, through the vapour-liquid-solid mechanism. Specifically, self-aligned “nanotracks” are found to exist trailing the Bi droplets on the sample surface. Through cross-sectional high-resolution transmission electron microscopy the nanotracks are revealed to in fact be elevated above surface by the formation of a subsurface planar nanowire, a structure initiated mid-way through the molecular-beam-epitaxy growth and embedded into the epilayer, via epitaxial overgrowth. Electron microscopy studies also yield the morphological, structural and chemical properties of the nanostructures. Through a combination of Bi determination methods the compositional profile of the film is shown to be graded and inhomogeneous. Furthermore, the coherent and pure zincblende phase property of the film is detailed. Optical characterisation of features on the sample surface is carried out using polarised micro-Raman and micro-photoluminescence spectroscopies. The important light producing properties of the surface nanostructures are investigated through pump intensity-dependent micro-PL measurements, whereby relatively large local inhomogeneities are revealed to exist on the epitaxial surface for important optical parameters. We conclude that such surface effects must be considered when designing and fabricating optical devices based on GaAsBi alloys.
  • Item
    Dynamics of Broadband Lasing Cascade from a Single Dot-in-well InGaAs Microdisk
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Talalaev, Vadim; Kryzhanovskaya, Natalia; Tomm, Jens W.; Rutckaia, Viktoriia; Schilling, Joerg; Zhukov, Alexey
    The development of a fast semiconductor laser is required for the realization of next-generation telecommunication applications. Since lasers operating on quantum dot ground state transitions exhibit only limited gain due to the saturation effect, we investigate lasing from excited states and compare its corresponding static and dynamic behavior to the one from the ground state. InAs quantum dots (QDs) grown in dot-in-well (DWELL) structures allowed to obtain light emission from ground and three excited states in a spectral range of 1.0–1.3 μm. This emission was coupled to whispering gallery modes (WGMs) of a 6 μm microdisk resonator and studied at room temperature by steady-state and time-resolved micro-photoluminescence. We demonstrate a cascade development of lasing arising from the ladder of quantum dot states, and compare the lasing behavior of ground and excited state emission. While the lasing threshold is being increased from the ground state to the highest excited state, the dynamic behavior is improved: turn-on times and lifetimes of WGMs become shorter paving the way towards high frequency direct driven microlasers. © 2019, The Author(s).