Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

2015, Yttri, K.E., Schnelle-Kreis, J., Maenhaut, W., Abbaszade, G., Alves, C., Bjerke, A., Bonnier, N., Bossi, R., Claeys, M., Dye, C., Evtyugina, M., García-Gacio, D., Hillamo, R., Hoffer, A., Hyder, M., Iinuma, Y., Jaffrezo, J.-L., Kasper-Giebl, A., Kiss, G., López-Mahia, P.L., Pio, C., Piot, C., Ramirez-Santa-Cruz, C., Sciare, J., Teinilä, K., Vermeylen, R., Vicente, A., Zimmermann, R.

The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from −63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was −60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from −84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.

Loading...
Thumbnail Image
Item

Multi-method study of the Middle Pleistocene loess-palaeosol sequence of Köndringen, SW Germany

2023, Schwahn, Lea, Schulze, Tabea, Fülling, Alexander, Zeeden, Christian, Preusser, Frank, Sprafke, Tobias

Loess-palaeosol sequences (LPSs) remain poorly investigated in the southern part of the Upper Rhine Graben but represent an important element to understand the environmental context controlling sediment dynamics in the area. A multi-method approach applied to the LPS at Köndringen reveals that its formation occurred during several glacial-interglacial cycles. Field observations, as well as colour, grain size, magnetic susceptibility, organic carbon, and carbonate content measured in three profiles at 5 cm resolution, provide detailed stratigraphical information. Only minor parts of the LPS are made up of loess sediment, whereas the major parts are polygenetic palaeosols and pedosediments of varying development that are partly intersected, testifying to a complex local geomorphic evolution. The geochronological framework is based on 10 cm resolution infrared-stimulated luminescence (IRSL) screening combined with 18 multi-elevated-temperature post-IR IRSL ages. The luminescence ages indicate that two polygenetic, truncated Luvisols formed during marine isotope stages (MISs) 9(-7?) and MIS 5e, whereas unaltered loess units correspond to the last glacial (MISs 5d-2) and MIS 8. The channel-like structure containing the two truncated Luvisols cuts into > 2 m thick pedosediments apparently deposited during MIS 12. At the bottom of the LPS, a horizon with massive carbonate concretions (loess dolls) occurs, which may correspond to at least one older interglacial.

Loading...
Thumbnail Image
Item

Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Microphysical properties and mineralogy

2017, Kandler, K., Schütz, L., Jäckel, S., Lieke, K., Emmel, C., Müller-Ebert, D., Ebert, M., Scheuvens, D., Schladitz, A., Šegvić, B., Wiedensohler, A., Weinbruch, S.

A large field experiment of the Saharan Mineral Dust Experiment (SAMUM) was performed in Praia, Cape Verde, in January and February 2008. This work reports on the aerosol mass concentrations, size distributions and mineralogical composition of the aerosol arriving at Praia. Three dust periods were recorded during the measurements, divided by transitional periods and embedded in maritime-influenced situations. The total suspended particle mass/PM10/PM2.5 were 250/180/74μg/m3 on average for the first dust period (17–21 January) and 250/230/83μg/m3 for the second (24–26 January). The third period (28 January to 2 February) was the most intensive with 410/340/130 μg/m3. Four modes were identified in the size distribution. The first mode (50–70 nm) and partly the second (700–1100 nm) can be regarded as of marine origin, but some dust contributes to the latter. The third mode (2–4 μm) is dominated by advected dust, while the intermittently occurring fourth mode (15–70 μm) may have a local contribution. The dust consisted of kaolinite (dust/maritime period: 35%wt./25%wt.),K-feldspar (20%wt./25%wt.), illite (14%wt./10%wt.), quartz (11%wt./8%wt.), smectites (6%wt./4%wt.), plagioclase (6%wt./1%wt.), gypsum (4%wt./7%wt.), halite (2%wt./17%wt.) and calcite (2%wt./3%wt.).