Search Results

Now showing 1 - 2 of 2
  • Item
    Quinone-decorated onion-like carbon/carbon fiber hybrid electrodes for high-rate supercapacitor applications
    (Hoboken, NJ : Wiley, 2015) Zeiger, Marco; Weingarth, Daniel; Presser, Volker
    The energy performance of carbon onions can be significantly enhanced by introducing pseudocapacitive materials, but this is commonly at the cost of power handling. In this study, a novel synergistic electrode preparation method was developed by using carbon-fiber substrates loaded with quinone-decorated carbon onions. The electrodes are free standing, binder free, extremely conductive, and the interfiber space filling overcomes the severely low apparent density commonly found for electrospun fibers. Electrochemical measurements were performed in organic and aqueous electrolytes. For both systems, a high electrochemical stability after 10 000 cycles was measured, as well as a long-term voltage floating test for the organic electrolyte. The capacitance in 1 M H2SO4 was 288 F g^−1 for the highest loading of quinones, which is similar to literature values, but with a very high power handling, showing more than 100 F g^−1 at a scan rate of 2 Vs^−1.
  • Item
    Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch
    (Weinheim : Wiley-VCH, 2020) Rietsch, Philipp; Sobottka, Sebastian; Hoffmann, Katrin; Popov, Alexey A.; Hildebrandt, Pascal; Sarkar, Biprajit; Resch-Genger, Ute; Eigler, Siegfried
    Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches. © 2020 The Authors. Published by Wiley-VCH GmbH