Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model

2017, Filioglou, Maria, Nikandrova, Anna, Niemelä, Sami, Baars, Holger, Mielonen, Tero, Leskinen, Ari, Brus, David, Romakkaniemi, Sami, Giannakaki, Elina, Komppula, Mika

We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitée Adaptation dynamique Développement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are < 2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50 % up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15±0.40 †kg-1); during summer it is wet (5.54±1.02 †kg-1); and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.

Loading...
Thumbnail Image
Item

Revisiting the Space Weather Environment of Proxima Centauri b

2022, Garraffo, Cecilia, Alvarado-Gómez, Julián D., Cohen, Ofer, Drake, Jeremy J.

Close-in planets orbiting around low-mass stars are exposed to intense energetic photon and particle radiation and harsh space weather. We have modeled such conditions for Proxima Centauri b, a rocky planet orbiting in the habitable zone of our closest neighboring star, finding a stellar wind pressure 3 orders of magnitude higher than the solar wind pressure on Earth. At that time, no Zeeman-Doppler observations of the surface magnetic field distribution of Proxima Cen were available and a proxy from a star with a similar Rossby number to Proxima was used to drive the MHD model. Recently, the first Zeeman-Doppler imaging (ZDI) observation of Proxima Cen became available. We have modeled Proxima b’s space weather using this map and compared it with the results from the proxy magnetogram. We also computed models for a high-resolution synthetic magnetogram for Proxima b generated by a state-of-the-art dynamo model. The resulting space weather conditions for these three scenarios are similar with only small differences found between the models based on the ZDI observed magnetogram and the proxy. We conclude that our proxy magnetogram prescription based on the Rossby number is valid, and provides a simple way to estimate stellar magnetic flux distributions when no direct observations are available. Comparisons with models based on the synthetic magnetogram show that the exact magnetogram details are not important for predicting global space weather conditions of planets, reinforcing earlier conclusions that the large-scale (low-order) field dominates, and that the small-scale field does not have much influence on the ambient stellar wind.