Search Results

Now showing 1 - 3 of 3
  • Item
    A complete representation of uncertainties in layer-counted paleoclimatic archives
    (München : European Geopyhsical Union, 2017) Boers, Niklas; Goswami, Bedartha; Ghil, Michael
    Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records – such as ice cores, sediments, corals, or tree rings – as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5–52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval.
  • Item
    Climate-induced speleothem radiocarbon variability on Socotra Island from the Last Glacial Maximum to the Younger Dryas
    (Katlenburg-Lindau : Copernicus Ges., 2020) Therre, Steffen; Fohlmeister, Jens; Fleitmann, Dominik; Matter, Albert; Burns, Stephen J.; Arps, Jennifer; Schröder-Ritzrau, Andrea; Friedrich, Ronny; Frank, Norbert
    In this study, the dead carbon fraction (DCF) variations in stalagmite M1-5 from Socotra Island in the western Arabian Sea were investigated through a new set of high-precision U-series and radiocarbon (14C) dates. The data reveal an extreme case of very high and also climate-dependent DCF. For M1-5, an average DCF of 56.2±3.4% is observed between 27 and 18kyrBP. Such high DCF values indicate a high influence of aged soil organic matter (SOM) and nearly completely closed-system carbonate dissolution conditions. Towards the end of the last glacial period, decreasing Mg/Ca ratios suggest an increase in precipitation which caused a marked change in the soil carbon cycling as indicated by sharply decreasing DCF. This is in contrast to the relation of soil infiltration and DCF as seen in stalagmites from temperate zones. For Socotra Island, which is influenced by the East African-Indian monsoon, we propose that more humid conditions and enhanced net infiltration after the Last Glacial Maximum (LGM) led to dense vegetation and thus lowered the DCF by increasing 14CO2 input into the soil zone. At the onset of the Younger Dryas (YD) a sudden change in DCF towards much higher, and extremely variable, values is observed. Our study highlights the dramatic variability of soil carbon cycling processes and vegetation feedback on Socotra Island manifested in stalagmite DCF on both long-term trends and sub-centennial timescales, thus providing evidence for climate influence on stalagmite radiocarbon. This is of particular relevance for speleothem studies that aim to reconstruct past atmospheric 14C (e.g., for the purposes of 14C calibration), as these would rely on largely climate-independent soil carbon cycling above the cave. © 2020 Copernicus GmbH. All rights reserved.
  • Item
    Estimation of sedimentary proxy records together with associated uncertainty
    (Göttingen : Copernicus GmbH, 2015) Goswami, B.; Heitzig, J.; Rehfeld, K.; Marwan, N.; Anoop, A.; Prasad, S.; Kurths, J.