Search Results

Now showing 1 - 2 of 2
  • Item
    Long-term variations of the mesospheric wind field at mid-latitudes
    (München : European Geopyhsical Union, 2007) Keuer, D.; Hoffmann, P.; Singer, W.; Bremer, J.
    Continuous MF radar observations at the station Juliusruh (54.6° N; 13.4° E) have been analysed for the time interval between 1990 and 2005, to obtain information about solar activity-induced variations, as well as long-term trends in the mesospheric wind field. Using monthly median values of the zonal and the meridional prevailing wind components, as well as of the amplitude of the semidiurnal tide, regression analyses have been carried out with a dependence on solar activity and time. The solar activity causes a significant amplification of the zonal winds during summer (increasing easterly winds) and winter (increasing westerly winds). The meridional wind component is positively correlated with the solar activity during summer but during winter the correlation is very small and non significant. Also, the solar influence upon the amplitude of the semidiurnal tidal component is relatively small (in dependence on height partly positive and partly negative) and mostly non-significant. The derived trends in the zonal wind component during summer are below an altitude of about 83 km negative and above this height positive. During the winter months the trends are nearly opposite compared with the trends in summer (transition height near 86 km). The trends in the meridional wind components are below about 85 km positive in summer (significant) and near zero (nonsignificant) in winter; above this height during both seasons negative trends have been detected. The trends in the semidiurnal tidal amplitude are at all heights positive, but only partly significant. The detected trends and solar cycle dependencies are compared with other experimental results and model calculations. There is no full agreement between the different results, probably caused by different measuring techniques and evaluation methods used. Also, different heights and observation periods investigated may contribute to the detected differences.
  • Item
    Long-term trends in the ionospheric E and F1 regions
    (Göttingen : Copernicus, 2008) Bremer, J.
    Ground based ionosonde measurements are the most essential source of information about long-term variations in the ionospheric E and F1 regions. Data of such observations have been derived at many different ionospheric stations all over the world some for more than 50 years. The standard parameters foE, h'E, and foF1 are used for trend analyses in this paper. Two main problems have to be considered in these analyses. Firstly, the data series have to be homogeneous, i.e. the observations should not be disturbed by artificial steps due to technical reasons or changes in the evaluation algorithm. Secondly, the strong solar and geomagnetic influences upon the ionospheric data have carefully to be removed by an appropriate regression analysis. Otherwise the small trends in the different ionospheric parameters cannot be detected. The trends derived at individual stations differ markedly, however their dependence on geographic or geomagnetic latitude is only small. Nevertheless, the mean global trends estimated from the trends at the different stations show some general behaviour (positive trends in foE and foF1, negative trend in h'E) which can at least qualitatively be explained by an increasing atmospheric greenhouse effect (increase of CO2 content and other greenhouse gases) and decreasing ozone values. The positive foE trend is also in qualitative agreement with rocket mass spectrometer observations of ion densities in the E region. First indications could be found that the changing ozone trend at mid-latitudes (before about 1979, between 1979 until 1995, and after about 1995) modifies the estimated mean foE trend.