Search Results

Now showing 1 - 2 of 2
  • Item
    Exceptionally High Blocking Temperature of 17 K in a Surface-Supported Molecular Magnet
    (Weinheim : Wiley-VCH, 2021) Paschke, Fabian; Birk, Tobias; Enenkel, Vivien; Liu, Fupin; Romankov, Vladyslav; Dreiser, Jan; Popov, Alexey A.; Fonin, Mikhail
    Single-molecule magnets (SMMs) are among the most promising building blocks for future magnetic data storage or quantum computing applications, owing to magnetic bistability and long magnetic relaxation times. The practical device integration requires realization of 2D surface assemblies of SMMs, where each magnetic unit shows magnetic relaxation being sufficiently slow at application-relevant temperatures. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism, it is shown that sub-monolayers of Dy2 @C80 (CH2 Ph) dimetallofullerenes prepared on graphene by electrospray deposition exhibit magnetic behavior fully comparable to that of the bulk. Magnetic hysteresis and relaxation time measurements show that the magnetic moment remains stable for 100 s at 17 K, marking the blocking temperature TB(100) , being not only in excellent agreement with that of the bulk sample but also representing by far the highest one detected for a surface-supported single-molecule magnet. The reported findings give a boost to the efforts to stabilize and address the spin degree of freedom in molecular magnets aiming at the realization of SMM-based spintronic units.
  • Item
    Nematic fluctuations in iron-oxychalcogenide Mott insulators
    (London : Nature Publishing Group, 2021) Freelon, B.; Sarkar, R.; Kamusella, S.; Brückner, F.; Grinenko, V.; Acharya, Swagata; Laad, Mukul; Craco, Luis; Yamani, Zahra; Flacau, Roxana; Swainson, Ian; Frandsen, Benjamin; Birgeneau, Robert; Liu, Yuhao; Karki, Bhupendra; Alfailakawi, Alaa; Neuefeind, Joerg C.; Everett, Michelle; Wang, Hangdong; Xu, Binjie; Fang, Minghu; Klauss, H.-H.
    Nematic fluctuations occur in a wide range physical systems from biological molecules to cuprates and iron pnictide high-Tc superconductors. It is unclear whether nematicity in pnictides arises from electronic spin or orbital degrees of freedom. We studied the iron-based Mott insulators La2O2Fe2OM2M = (S, Se), which are structurally similar to pnictides. Nuclear magnetic resonance revealed a critical slowing down of nematic fluctuations and complementary Mössbauerr spectroscopy data showed a change of electrical field gradient. The neutron pair distribution function technique detected local C2 fluctuations while neutron diffraction indicates that global C4 symmetry is preserved. A geometrically frustrated Heisenberg model with biquadratic and single-ion anisotropic terms provides the interpretation of the low temperature magnetic fluctuations. The nematicity is not due to spontaneous orbital order, instead it is linked to geometrically frustrated magnetism based on orbital selectivity. This study highlights the interplay between orbital order and spin fluctuations in nematicity.