Search Results

Now showing 1 - 2 of 2
  • Item
    The evolution of cloud and aerosol microphysics at the summit of Mt. Tai, China
    (Katlenburg-Lindau : EGU, 2020) Li, Jiarong; Zhu, Chao; Chen, Hui; Zhao, Defeng; Xue, Likun; Wang, Xinfeng; Li, Hongyong; Liu, Pengfei; Liu, Junfeng; Zhang, Chenglong; Mu, Yujing; Zhang, Wenjin; Zhang, Luming; Herrmann, Hartmut; Li, Kai; Liu, Min; Chen, Jianmin
    The influence of aerosols, both natural and anthropogenic, remains a major area of uncertainty when predicting the properties and the behaviours of clouds and their influence on climate. In an attempt to better understand the microphysical properties of cloud droplets, the simultaneous variations in aerosol microphysics and their potential interactions during cloud life cycles in the North China Plain, an intensive observation took place from 17 June to 30 July 2018 at the summit of Mt. Tai. Cloud microphysical parameters were monitored simultaneously with number concentrations of cloud condensation nuclei (NCCN) at different supersaturations, PM2:5 mass concentrations, particle size distributions and meteorological parameters. Number concentrations of cloud droplets (NC), liquid water content (LWC) and effective radius of cloud droplets (reff) show large variations among 40 cloud events observed during the campaign. The low values of reff and LWC observed at Mt. Tai are comparable with urban fog. Clouds on clean days are more susceptible to the change in concentrations of particle number (NP), while clouds formed on polluted days might be more sensitive to meteorological parameters, such as updraft velocity and cloud base height. Through studying the size distributions of aerosol particles and cloud droplets, we find that particles larger than 150 nm play important roles in forming cloud droplets with the size of 5-10 μm. In general, LWC consistently varies with reff. As NC increases, reff changes from a trimodal distribution to a unimodal distribution and shifts to smaller size mode. By assuming a constant cloud thickness and ignoring any lifetime effects, increase in NC and decrease in reff would increase cloud albedo, which may induce a cooling effect on the local climate system. Our results contribute valuable information to enhance the understanding of cloud and aerosol properties, along with their potential interactions on the North China plain. © Author(s) 2020.
  • Item
    ASAMgpu V1.0 - A moist fully compressible atmospheric model using graphics processing units (GPUs)
    (München : European Geopyhsical Union, 2012) Horn, S.
    In this work the three dimensional compressible moist atmospheric model ASAMgpu is presented. The calculations are done using graphics processing units (GPUs). To ensure platform independence OpenGL and GLSL are used, with that the model runs on any hardware supporting fragment shaders. The MPICH2 library enables interprocess communication allowing the usage of more than one GPU through domain decomposition. Time integration is done with an explicit three step Runge-Kutta scheme with a time-splitting algorithm for the acoustic waves. The results for four test cases are shown in this paper. A rising dry heat bubble, a cold bubble induced density flow, a rising moist heat bubble in a saturated environment, and a DYCOMS-II case.