Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

A multi-model assessment of the co-benefits of climate mitigation for global air quality

2016, Rao, Shilpa, Klimont, Zbigniew, Leitao, Joana, Riahi, Keywan, van Dingenen, Rita, Reis, Lara Aleluia, Calvin, Katherine, Dentener, Frank, Drouet, Laurent, Fujimori, Shinichiro, Harmsen, Mathijs, Luderer, Gunnar, Heyes, Chris, Strefler, Jessica, Tavoni, Massimo, van Vuuren, Detlef P.

We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

Loading...
Thumbnail Image
Item

Negative emissions—Part 2: Costs, potentials and side effects

2018, Fuss, Sabine, Lamb, William F., Callaghan, Max W., Hilaire, Jérôme, Creutzig, Felix, Amann, Thorben, Beringer, Tim, de Oliveira Garcia, Wagner, Hartmann, Jens, Khanna, Tarun, Luderer, Gunnar, Nemet, Gregory F., Rogelj, Joeri, Smith, Pete, Vicente Vicente, José Luis, Wilcox, Jennifer, del Mar Zamora Dominguez, Maria, Minx, Jan C.

The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 °C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5–3.6 GtCO2 yr−1 for afforestation and reforestation, 0.5–5 GtCO2 yr−1 for BECCS, 0.5–2 GtCO2 yr−1 for biochar, 2–4 GtCO2 yr−1 for enhanced weathering, 0.5–5 GtCO2 yr−1 for DACCS, and up to 5 GtCO2 yr−1 for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 °C of global warming.

Loading...
Thumbnail Image
Item

Wirkung von Klimaänderungen auf Vegetation: Entwicklung eines allgemeinen Modells für die Klimafolgenforschung : Abschlußbericht

1999, Cramer, Wolfgang

[no abstract available]