Search Results

Now showing 1 - 7 of 7
  • Item
    On the effect of orbital forcing on mid-Pliocene climate, vegetation and ice sheets
    (München : European Geopyhsical Union, 2013) Willeit, M.; Ganopolski, A.; Feulner, G.
    We present results from modelling of the mid-Pliocene warm period (3.3–3 million years ago) using the Earth system model of intermediate complexity CLIMBER-2 analysing the effect of changes in boundary conditions as well as of orbital forcing on climate. First we performed equilibrium experiments following the PlioMIP (Pliocene Model Intercomparison Project) protocol with a CO2 concentration of 405 ppm, reconstructed mid-Pliocene orography and vegetation and a present-day orbital configuration. Simulated global Pliocene warming is about 2.5 °C, fully consistent with results of atmosphere–ocean general circulation model simulations performed for the same modelling setup. A factor separation analysis attributes 1.5 °C warming to CO2, 0.3 °C to orography, 0.2 °C to ice sheets and 0.4 °C to vegetation. Transient simulations for the entire mid-Pliocene warm period with time-dependent orbital forcing as well as interactive ice sheets and vegetation give a global warming varying within the range 1.9–2.8 °C. Ice sheet and vegetation feedbacks in synergy act as amplifiers of the orbital forcing, transforming seasonal insolation variations into an annual mean temperature signal. The effect of orbital forcing is more significant at high latitudes, especially during boreal summer, when the warming over land varies in the wide range from 0 to 10 °C. The modelled ice-sheet extent and vegetation distribution also show significant temporal variations. Modelled and reconstructed data for Northern Hemisphere sea-surface temperatures and vegetation distribution show the best agreement if the reconstructions are assumed to be representative for the warmest periods during the orbital cycles. This suggests that low-resolution Pliocene palaeoclimate reconstructions can reflect not only the impact of increased CO2 concentrations and topography changes but also the effect of orbital forcing. Therefore, the climate (Earth system) sensitivity estimates from Pliocene reconstructions which do not account for the effect of orbital forcing can be biased toward high values.
  • Item
    A climate network perspective on the intertropical convergence zone
    (Göttingen : Copernicus Publ., 2021) Wolf, Frederik; Voigt, Aiko; Donner, Reik V.
    The intertropical convergence zone (ITCZ) is an important component of the tropical rain belt. Climate models continue to struggle to adequately represent the ITCZ and differ substantially in its simulated response to climate change. Here we employ complex network approaches, which extract spatiotemporal variability patterns from climate data, to better understand differences in the dynamics of the ITCZ in state-of-the-art global circulation models (GCMs). For this purpose, we study simulations with 14 GCMs in an idealized slab-ocean aquaplanet setup from TRACMIP – the Tropical Rain belts with an Annual cycle and a Continent Model Intercomparison Project. We construct network representations based on the spatial correlation patterns of monthly surface temperature anomalies and study the zonal-mean patterns of different topological and spatial network characteristics. Specifically, we cluster the GCMs by means of the distributions of their zonal network measures utilizing hierarchical clustering. We find that in the control simulation, the distributions of the zonal network measures are able to pick up model differences in the tropical sea surface temperature (SST) contrast, the ITCZ position, and the strength of the Southern Hemisphere Hadley cell. Although we do not find evidence for consistent modifications in the network structure tracing the response of the ITCZ to global warming in the considered model ensemble, our analysis demonstrates that coherent variations of the global SST field are linked to ITCZ dynamics. This suggests that climate networks can provide a new perspective on ITCZ dynamics and model differences therein.
  • Item
    Do new sea spray aerosol source functions improve the results of a regional aerosol model?
    (Amsterdam [u.a.] : Elsevier Science, 2018) Barthel, Stefan; Tegen, Ina; Wolke, Ralf
    Sea spray aerosol particle is a dominating part of the global aerosol mass load of natural origin. Thus, it strongly influences the atmospheric radiation balance and cloud properties especially over the oceans. Uncertainties of the estimated climate impacts by this aerosol type are partly caused by the uncertainties in the particle size dependent emission fluxes of sea spray aerosol particle. We present simulations with a regional aerosol transport model system in two domains, for three months and compared the model results to measurements at four stations using various sea spray aerosol particle source source functions. Despite these limitations we found the results using different source functions are within the range of most model uncertainties. Especially the model's ability to produce realistic wind speeds is crucial. Furthermore, the model results are more affected by a function correcting the emission flux for the effect of the sea surface temperature than by the use of different source functions. © 2018 The Authors
  • Item
    A critical humidity threshold for monsoon transitions
    (München : European Geopyhsical Union, 2012) Schewe, J.; Levermann, A.; Cheng, H.
    Monsoon systems around the world are governed by the so-called moisture-advection feedback. Here we show that, in a minimal conceptual model, this feedback implies a critical threshold with respect to the atmospheric specific humidity qo over the ocean adjacent to the monsoon region. If qo falls short of this critical value qoc, monsoon rainfall over land cannot be sustained. Such a case could occur if evaporation from the ocean was reduced, e.g. due to low sea surface temperatures. Within the restrictions of the conceptual model, we estimate qoc from present-day reanalysis data for four major monsoon systems, and demonstrate how this concept can help understand abrupt variations in monsoon strength on orbital timescales as found in proxy records.
  • Item
    Glacial CO 2 cycle as a succession of key physical and biogeochemical processes
    (München : European Geopyhsical Union, 2012) Brovkin, V.; Ganopolski, A.; Archer, D.; Munhoven, G.
    During glacial-interglacial cycles, atmospheric CO2 concentration varied by about 100 ppmv in amplitude. While testing mechanisms that have led to the low glacial CO2 level could be done in equilibrium model experiments, an ultimate goal is to explain CO2 changes in transient simulations through the complete glacial-interglacial cycle. The computationally efficient Earth System model of intermediate complexity CLIMBER-2 is used to simulate global biogeochemistry over the last glacial cycle (126 kyr). The physical core of the model (atmosphere, ocean, land and ice sheets) is driven by orbital changes and reconstructed radiative forcing from greenhouses gases, ice, and aeolian dust. The carbon cycle model is able to reproduce the main features of the CO2 changes: a 50 ppmv CO2 drop during glacial inception, a minimum concentration at the last glacial maximum 80 ppmv lower than the Holocene value, and an abrupt 60 ppmv CO2 rise during the deglaciation. The model deep ocean δ13C also resembles reconstructions from deep-sea cores. The main drivers of atmospheric CO2 evolve in time: changes in sea surface temperatures and in the volume of bottom water of southern origin control atmospheric CO2 during the glacial inception and deglaciation; changes in carbonate chemistry and marine biology are dominant during the first and second parts of the glacial cycle, respectively. These feedback mechanisms could also significantly impact the ultimate climate response to the anthropogenic perturbation.
  • Item
    Network-based identification and characterization of teleconnections on different scales
    ([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Agarwal, Ankit; Caesar, Levke; Marwan, Norbert; Maheswaran, Rathinasamy; Merz, Bruno; Kurths, Jürgen
    Sea surface temperature (SST) patterns can – as surface climate forcing – affect weather and climate at large distances. One example is El Niño-Southern Oscillation (ENSO) that causes climate anomalies around the globe via teleconnections. Although several studies identified and characterized these teleconnections, our understanding of climate processes remains incomplete, since interactions and feedbacks are typically exhibited at unique or multiple temporal and spatial scales. This study characterizes the interactions between the cells of a global SST data set at different temporal and spatial scales using climate networks. These networks are constructed using wavelet multi-scale correlation that investigate the correlation between the SST time series at a range of scales allowing instantaneously deeper insights into the correlation patterns compared to traditional methods like empirical orthogonal functions or classical correlation analysis. This allows us to identify and visualise regions of – at a certain timescale – similarly evolving SSTs and distinguish them from those with long-range teleconnections to other ocean regions. Our findings re-confirm accepted knowledge about known highly linked SST patterns like ENSO and the Pacific Decadal Oscillation, but also suggest new insights into the characteristics and origins of long-range teleconnections like the connection between ENSO and Indian Ocean Dipole.
  • Item
    Principal nonlinear dynamical modes of climate variability
    (London : Nature Publishing Group, 2015) Mukhin, D.; Gavrilov, A.; Feigin, A.; Loskutov, E.; Kurths, J.