Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Estimation of sedimentary proxy records together with associated uncertainty

2015, Goswami, B., Heitzig, J., Rehfeld, K., Marwan, N., Anoop, A., Prasad, S., Kurths, J.

Loading...
Thumbnail Image
Item

Silicon Isotopes in an EMIC's Ocean: Sensitivity to Runoff, Iron Supply, and Climate

2020, Dietze, H., Löptien, U., Hordoir, R., Heinemann, M., Huiskamp, W., Schneider, B.

The isotopic composition of Si in biogenic silica (BSi), such as opal buried in the oceans' sediments, has changed over time. Paleorecords suggest that the isotopic composition, described in terms of d30Si, was generally much lower during glacial times than today. There is consensus that this variability is attributable to differing environmental conditions at the respective time of BSi production and sedimentation. The detailed links between environmental conditions and the isotopic composition of BSi in the sediments remain, however, poorly constrained. In this study, we explore the effects of a suite of offset boundary conditions during the Last Glacial Maximum (LGM) on the isotopic composition of BSi archived in sediments in an Earth System Model of intermediate complexity (EMIC). Our model results suggest that a change in the isotopic composition of Si supply to the glacial ocean is sufficient to explain the observed overall low(er) glacial d30Si in BSi. All other processes explored trigger model responses of either wrong sign or magnitude or are inconsistent with a recent estimate of bottom water oxygenation in the Atlantic Sector of the Southern Ocean. Caveats, mainly associated with generic uncertainties in today's pelagic biogeochemical modules, remain. © 2020. The Authors.

Loading...
Thumbnail Image
Item

Abrupt sand-dune accumulation at the northeastern margin of the Tibetan Plateau challenges the wet MIS3a inferred from numerous lake-highstands

2016, Long, Hao, Fuchs, Markus, Yang, Linhai, Cheng, Hongyi

We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity.