Search Results

Now showing 1 - 8 of 8
  • Item
    Characterization of Silicon Crystals Grown from Melt in a Granulate Crucible
    (Warrendale, Pa : TMS, 2020) Dadzis, K.; Menzel, R.; Juda, U.; Irmscher, K.; Kranert, C.; Müller, M.; Ehrl, M.; Weingärtner, R.; Reimann, C.; Abrosimov, N.; Riemann, H.
    The growth of silicon crystals from a melt contained in a granulate crucible significantly differs from the classical growth techniques because of the granulate feedstock and the continuous growth process. We performed a systematic study of impurities and structural defects in several such crystals with diameters up to 60 mm. The possible origin of various defects is discussed and attributed to feedstock (concentration of transition metals), growth setup (carbon concentration), or growth process (dislocation density), showing the potential for further optimization. A distinct correlation between crystal defects and bulk carrier lifetime is observed. A bulk carrier lifetime with values up to 600 μs on passivated surfaces of dislocation-free parts of the crystal is currently achieved.
  • Item
    The multi-photon induced Fano effect
    ([London] : Nature Publishing Group UK, 2021) Litvinenko, K.L.; Le, Nguyen H.; Redlich, B.; Pidgeon, C.R.; Abrosimov, N.V.; Andreev, Y.; Huang, Zhiming; Murdin, B.N.
    The ordinary Fano effect occurs in many-electron atoms and requires an autoionizing state. With such a state, photo-ionization may proceed via pathways that interfere, and the characteristic asymmetric resonance structures appear in the continuum. Here we demonstrate that Fano structure may also be induced without need of auto-ionization, by dressing the continuum with an ordinary bound state in any atom by a coupling laser. Using multi-photon processes gives complete, ultra-fast control over the interference. We show that a line-shape index q near unity (maximum asymmetry) may be produced in hydrogenic silicon donors with a relatively weak beam. Since the Fano lineshape has both constructive and destructive interference, the laser control opens the possibility of state-selective detection with enhancement on one side of resonance and invisibility on the other. We discuss a variety of atomic and molecular spectroscopies, and in the case of silicon donors we provide a calculation for a qubit readout application.
  • Item
    Wafer-scale nanofabrication of telecom single-photon emitters in silicon
    ([London] : Nature Publishing Group UK, 2022) Hollenbach, Michael; Klingner, Nico; Jagtap, Nagesh S.; Bischoff, Lothar; Fowley, Ciarán; Kentsch, Ulrich; Hlawacek, Gregor; Erbe, Artur; Abrosimov, Nikolay V.; Helm, Manfred; Berencén, Yonder; Astakhov, Georgy V.
    A highly promising route to scale millions of qubits is to use quantum photonic integrated circuits (PICs), where deterministic photon sources, reconfigurable optical elements, and single-photon detectors are monolithically integrated on the same silicon chip. The isolation of single-photon emitters, such as the G centers and W centers, in the optical telecommunication O-band, has recently been realized in silicon. In all previous cases, however, single-photon emitters were created uncontrollably in random locations, preventing their scalability. Here, we report the controllable fabrication of single G and W centers in silicon wafers using focused ion beams (FIB) with high probability. We also implement a scalable, broad-beam implantation protocol compatible with the complementary-metal-oxide-semiconductor (CMOS) technology to fabricate single telecom emitters at desired positions on the nanoscale. Our findings unlock a clear and easily exploitable pathway for industrial-scale photonic quantum processors with technology nodes below 100 nm.
  • Item
    Electronic materials with a wide band gap: Recent developments
    (Chester : International Union of Crystallography, 2014) Klimm, D.
    The development of semiconductor electronics is reviewed briefly, beginning with the development of germanium devices (band gap E g = 0.66 eV) after World War II. A tendency towards alternative materials with wider band gaps quickly became apparent, starting with silicon (E g = 1.12 eV). This improved the signal-to-noise ratio for classical electronic applications. Both semiconductors have a tetrahedral coordination, and by isoelectronic alternative replacement of Ge or Si with carbon or various anions and cations, other semiconductors with wider E g were obtained. These are transparent to visible light and belong to the group of wide band gap semiconductors. Nowadays, some nitrides, especially GaN and AlN, are the most important materials for optical emission in the ultraviolet and blue regions. Oxide crystals, such as ZnO and β-Ga2O3, offer similarly good electronic properties but still suffer from significant difficulties in obtaining stable and technologically adequate p-type conductivity.
  • Item
    Violation of a Leggett-Garg inequality with ideal non-invasive measurements
    (London : Nature Publishing Group, 2012) Knee, G.C.; Simmons, S.; Gauger, E.M.; Morton, J.J.L.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Itoh, K.M.; Thewalt, M.L.W.; Briggs, G.A.D.; Benjamin, S.C.
    The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.
  • Item
    Si:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars
    (London : Nature Publishing Group, 2013) Murdin, B.N.; Li, J.; Pang, M.L.Y.; Bowyer, E.T.; Litvinenko, K.L.; Clowes, S.K.; Engelkamp, H.; Pidgeon, C.R.; Galbraith, I.; Abrosimov, N.V.; Riemann, H.; Pavlov, S.G.; Hübers, H.-W.; Murdin, P.G.
    Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10 5 T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H 2 analogues, and for investigation of He 2, a bound molecule predicted under extreme field conditions.
  • Item
    A new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant
    (Sèvres : Bureau, 2017) Abrosimov, N.V.; Aref’ev, D.G.; Becker, P.; Bettin, H.; Bulanov, A.D.; Churbanov, M.F.; Filimonov, S.V.; Gavva, V.A.; Godisov, O.N.; Gusev, A.V.; Kotereva, T.V.; Nietzold, D.; Peters, M.; Potapov, A.M.; Pohl, H.-J.; Pramann, A.; Riemann, H.; Scheel, P.-T.; Stosch, R.; Wundrack, S.; Zakel, S.
    A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, NA, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2  ×  10−8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.
  • Item
    Electronic Properties and Structure of Boron–Hydrogen Complexes in Crystalline Silicon
    (Weinheim : Wiley-VCH, 2021-9-17) De Guzman, Joyce Ann T.; Markevich, Vladimir P.; Coutinho, José; Abrosimov, Nikolay V.; Halsall, Matthew P.; Peaker, Anthony R.
    The subject of hydrogen–boron interactions in crystalline silicon is revisited with reference to light and elevated temperature-induced degradation (LeTID) in boron-doped solar silicon. Ab initio modeling of structure, binding energy, and electronic properties of complexes incorporating a substitutional boron and one or two hydrogen atoms is performed. From the calculations, it is confirmed that a BH pair is electrically inert. It is found that boron can bind two H atoms. The resulting BH2 complex is a donor with a transition level estimated at E c–0.24 eV. Experimentally, the electrically active defects in n-type Czochralski-grown Si crystals co-doped with phosphorus and boron, into which hydrogen is introduced by different methods, are investigated using junction capacitance techniques. In the deep-level transient spectroscopy (DLTS) spectra of hydrogenated Si:P + B crystals subjected to heat-treatments at 100 °C under reverse bias, an electron emission signal with an activation energy of ≈0.175 eV is detected. The trap is a donor with electronic properties close to those predicted for boron–dihydrogen. The donor character of BH2 suggests that it can be a very efficient recombination center of minority carriers in B-doped p-type Si crystals. A sequence of boron–hydrogen reactions, which can be related to the LeTID effect in Si:B is proposed.