Search Results

Now showing 1 - 10 of 23
  • Item
    Simulating the effect of tillage practices with the global ecosystem model LPJmL (version 5.0-tillage)
    (Katlenburg-Lindau : Copernicus, 2019) Lutz, Femke; Herzfeld, Tobias; Heinke, Jens; Rolinski, Susanne; Schaphoff, Sibyll; von Bloh, Werner; Stoorvogel, Jetse J.; Müller, Christoph
    The effects of tillage on soil properties, crop productivity, and global greenhouse gas emissions have been discussed in the last decades. Global ecosystem models have limited capacity to simulate the various effects of tillage. With respect to the decomposition of soil organic matter, they either assume a constant increase due to tillage or they ignore the effects of tillage. Hence, they do not allow for analysing the effects of tillage and cannot evaluate, for example, reduced tillage or no tillage (referred to here as “no-till”) practises as mitigation practices for climate change. In this paper, we describe the implementation of tillage-related practices in the global ecosystem model LPJmL. The extended model is evaluated against reported differences between tillage and no-till management on several soil properties. To this end, simulation results are compared with published meta-analyses on tillage effects. In general, the model is able to reproduce observed tillage effects on global, as well as regional, patterns of carbon and water fluxes. However, modelled N fluxes deviate from the literature values and need further study. The addition of the tillage module to LPJmL5 opens up opportunities to assess the impact of agricultural soil management practices under different scenarios with implications for agricultural productivity, carbon sequestration, greenhouse gas emissions, and other environmental indicators.
  • Item
    A generic pixel-to-point comparison for simulated large-scale ecosystem properties and ground-based observations: An example from the Amazon region
    (Katlenburg-Lindau : Copernicus, 2018) Rammig, Anja; Heinke, Jens; Hofhansl, Florian; Verbeeck, Hans; Baker, Timothy R.; Christoffersen, Bradley; Ciais, Philippe; De Deurwaerder, Hannes; Fleischer, Katrin; Galbraith, David; Guimberteau, Matthieu; Huth, Andreas; Johnson, Michelle; Krujit, Bart; Langerwisch, Fanny; Meir, Patrick; Papastefanou, Phillip; Sampaio, Gilvan; Thonicke, Kirsten; von Randow, Celso; Zang, Christian; Rödig, Edna
    Comparing model output and observed data is an important step for assessing model performance and quality of simulation results. However, such comparisons are often hampered by differences in spatial scales between local point observations and large-scale simulations of grid cells or pixels. In this study, we propose a generic approach for a pixel-to-point comparison and provide statistical measures accounting for the uncertainty resulting from landscape variability and measurement errors in ecosystem variables. The basic concept of our approach is to determine the statistical properties of small-scale (within-pixel) variability and observational errors, and to use this information to correct for their effect when large-scale area averages (pixel) are compared to small-scale point estimates. We demonstrate our approach by comparing simulated values of aboveground biomass, woody productivity (woody net primary productivity, NPP) and residence time of woody biomass from four dynamic global vegetation models (DGVMs) with measured inventory data from permanent plots in the Amazon rainforest, a region with the typical problem of low data availability, potential scale mismatch and thus high model uncertainty. We find that the DGVMs under- and overestimate aboveground biomass by 25% and up to 60%, respectively. Our comparison metrics provide a quantitative measure for model-data agreement and show moderate to good agreement with the region-wide spatial biomass pattern detected by plot observations. However, all four DGVMs overestimate woody productivity and underestimate residence time of woody biomass even when accounting for the large uncertainty range of the observational data. This is because DGVMs do not represent the relation between productivity and residence time of woody biomass correctly. Thus, the DGVMs may simulate the correct large-scale patterns of biomass but for the wrong reasons. We conclude that more information about the underlying processes driving biomass distribution are necessary to improve DGVMs. Our approach provides robust statistical measures for any pixel-to-point comparison, which is applicable for evaluation of models and remote-sensing products.
  • Item
    Inferring causation from time series in Earth system sciences
    ([London] : Nature Publishing Group UK, 2019) Runge, Jakob; Bathiany, Sebastian; Bollt, Erik; Camps-Valls, Gustau; Coumou, Dim; Deyle, Ethan; Glymour, Clark; Kretschmer, Marlene; Mahecha, Miguel D.; Muñoz-Marí, Jordi; van Nes, Egbert H.; Peters, Jonas; Quax, Rick; Reichstein, Markus; Scheffer, Marten; Schölkopf, Bernhard; Spirtes, Peter; Sugihara, George; Sun, Jie; Zhang, Kun; Zscheischler, Jakob
    The heart of the scientific enterprise is a rational effort to understand the causes behind the phenomena we observe. In large-scale complex dynamical systems such as the Earth system, real experiments are rarely feasible. However, a rapidly increasing amount of observational and simulated data opens up the use of novel data-driven causal methods beyond the commonly adopted correlation techniques. Here, we give an overview of causal inference frameworks and identify promising generic application cases common in Earth system sciences and beyond. We discuss challenges and initiate the benchmark platform causeme.net to close the gap between method users and developers. © 2019, The Author(s).
  • Item
    Two-thirds of global cropland area impacted by climate oscillations
    (London : Nature Publishing Group, 2018) Heino, M.; Puma, M.J.; Ward, P.J.; Gerten, D.; Heck, V.; Siebert, S.; Kummu, M.
    The El Niño Southern Oscillation (ENSO) peaked strongly during the boreal winter 2015-2016, leading to food insecurity in many parts of Africa, Asia and Latin America. Besides ENSO, the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) are known to impact crop yields worldwide. Here we assess for the first time in a unified framework the relationships between ENSO, IOD and NAO and simulated crop productivity at the sub-country scale. Our findings reveal that during 1961-2010, crop productivity is significantly influenced by at least one large-scale climate oscillation in two-thirds of global cropland area. Besides observing new possible links, especially for NAO in Africa and the Middle East, our analyses confirm several known relationships between crop productivity and these oscillations. Our results improve the understanding of climatological crop productivity drivers, which is essential for enhancing food security in many of the most vulnerable places on the planet.
  • Item
    A hindcast simulation of Arctic and Antarctic sea ice variability, 1955-2001
    (Tromsø : Norwegian Polar Institute, 2003) Fichefet, T.; Goosse, H.; Morales Maqueda, M.A.
    A hindcast simulation of the Arctic and Antarctic sea ice variability during 1955-2001 has been performed with a global, coarse resolution ice-ocean model driven by the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis daily surface air temperatures and winds. Both the mean state and variability of the ice packs over the satellite observing period are reasonably well reproduced by the model. Over the 47-year period, the simulated ice area (defined as the total ice-covered oceanic area) in each hemisphere experiences large decadal variability together with a decreasing trend of ∼1% per decade. In the Southern Hemisphere, this trend is mostly caused by an abrupt retreat of the ice cover during the second half of the 1970s and the beginning of the 1980s. The modelled ice volume also exhibits pronounced decadal variability, especially in the Northern Hemisphere. Besides these fluctuations, we detected a downward trend in Arctic ice volume of 1.8% per decade and an upward trend in Antarctic ice volume of 1.5% per decade. However, caution must be exercised when interpreting these trends because of the shortness of the simulation and the strong decadal variations. Furthermore, sensitivity experiments have revealed that the trend in Antarctic ice volume is model-dependent.
  • Item
    Digital IIR filters design using differential evolution algorithm with a controllable probabilistic population size
    (San Francisco, CA : Public Library of Science (PLoS), 2012) Zhu, W.; Fang, J.-A.; Tang, Y.; Zhang, W.; Du, W.
    Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.
  • Item
    Identifying causal gateways and mediators in complex spatio-temporal systems
    (London : Nature Publishing Group, 2015) Runge, J.; Petoukhov, V.; Donges, J.F.; Hlinka, J.; Jajcay, N.; Vejmelka, M.; Hartman, D.; Marwan, N.; Paluš, M.; Kurths, J.
  • Item
    Consistent negative response of US crops to high temperatures in observations and crop models
    (London : Nature Publishing Group, 2017) Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; Pugh, T.A.M.; Rolinski, S.; Schaphoff, S.; Schmid, E.; Wang, X.; Schlenker, W.; Frieler, K.
    High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day >30 °C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures >30 °C. Elevated CO 2 can only weakly reduce these yield losses, in contrast to irrigation.
  • Item
    Assessing the impacts of 1.5 °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)
    (München : European Geopyhsical Union, 2017) Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P.O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki
    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5°C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).
  • Item
    The Effect of Obliquity-Driven Changes on Paleoclimate Sensitivity During the Late Pleistocene
    (Hoboken, NJ : Wiley, 2018) Köhler, Peter; Knorr, Gregor; Stap, Lennert B.; Ganopolski, Andrey; de Boer, Bas; van de Wal, Roderik S. W.; Barker, Stephen; Rüpke, Lars H.
    We reanalyze existing paleodata of global mean surface temperature ΔTg and radiative forcing ΔR of CO2 and land ice albedo for the last 800,000 years to show that a state-dependency in paleoclimate sensitivity S, as previously suggested, is only found if ΔTg is based on reconstructions, and not when ΔTg is based on model simulations. Furthermore, during times of decreasing obliquity (periods of land ice sheet growth and sea level fall) the multimillennial component of reconstructed ΔTg diverges from CO2, while in simulations both variables vary more synchronously, suggesting that the differences during these times are due to relatively low rates of simulated land ice growth and associated cooling. To produce a reconstruction-based extrapolation of S for the future, we exclude intervals with strong ΔTg-CO2 divergence and find that S is less state-dependent, or even constant state-independent), yielding a mean equilibrium warming of 2–4 K for a doubling of CO2.