Search Results

Now showing 1 - 10 of 91
  • Item
    Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study
    (München : European Geopyhsical Union, 2012) Wagner, R.; Ajtai, T.; Kandler, K.; Lieke, K.; Linke, C.; Müller, T.; Schnaiter, M.; Vragel, M.
    We have retrieved the wavelength-dependent imaginary parts of the complex refractive index for five different Saharan dust aerosol particles of variable mineralogical composition at wavelengths between 305 and 955 nm. The dust particles were generated by dispersing soil samples into a laboratory aerosol chamber, typically yielding particle sizes with mean diameters ranging from 0.3 to 0.4 μm and maximum diameters from 2 to 4 μm. The extinction and absorption coefficients as well as the number size distribution of the dust particles were simultaneously measured by various established techniques. An inversion scheme based on a spheroidal dust model was employed to deduce the refractive indices. The retrieved imaginary parts of the complex refractive index were in the range from 0.003 to 0.005, 0.005 to 0.011, and 0.016 to 0.050 at the wavelengths 955, 505, and 305 nm. The hematite content of the dust particles was determined by electron-microscopical single particle analysis. Hematite volume fractions in the range from 1.1 to 2.7% were found for the different dusts, a range typical for atmospheric mineral dust. We have performed a sensitivity study to assess how accurately the retrieved imaginary refractive indices could be reproduced by calculations with mixing rule approximations using the experimentally determined hematite contents as input.
  • Item
    Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon
    (München : European Geopyhsical Union, 2016) van Pinxteren, Dominik; Fomba, Khanneh Wadinga; Mertes, Stephan; Müller, Konrad; Spindler, Gerald; Schneider, Johannes; Lee, Taehyoung; Collett, Jeffrey L.; Herrmann, Hartmut
    Cloud water samples were taken in September/October 2010 at Mt. Schmücke in a rural, forested area in Germany during the Lagrange-type Hill Cap Cloud Thuringia 2010 (HCCT-2010) cloud experiment. Besides bulk collectors, a three-stage and a five-stage collector were applied and samples were analysed for inorganic ions (SO42−,NO3−, NH4+, Cl−, Na+, Mg2+, Ca2+, K+), H2O2 (aq), S(IV), and dissolved organic carbon (DOC). Campaign volume-weighted mean concentrations were 191, 142, and 39 µmol L−1 for ammonium, nitrate, and sulfate respectively, between 4 and 27 µmol L−1 for minor ions, 5.4 µmol L−1 for H2O2 (aq), 1.9 µmol L−1 for S(IV), and 3.9 mgC L−1 for DOC. The concentrations compare well to more recent European cloud water data from similar sites. On a mass basis, organic material (as DOC × 1.8) contributed 20–40 % (event means) to total solute concentrations and was found to have non-negligible impact on cloud water acidity. Relative standard deviations of major ions were 60–66 % for solute concentrations and 52–80 % for cloud water loadings (CWLs). The similar variability of solute concentrations and CWLs together with the results of back-trajectory analysis and principal component analysis, suggests that concentrations in incoming air masses (i.e. air mass history), rather than cloud liquid water content (LWC), were the main factor controlling bulk solute concentrations for the cloud studied. Droplet effective radius was found to be a somewhat better predictor for cloud water total ionic content (TIC) than LWC, even though no single explanatory variable can fully describe TIC (or solute concentration) variations in a simple functional relation due to the complex processes involved. Bulk concentrations typically agreed within a factor of 2 with co-located measurements of residual particle concentrations sampled by a counterflow virtual impactor (CVI) and analysed by an aerosol mass spectrometer (AMS), with the deviations being mainly caused by systematic differences and limitations of the approaches (such as outgassing of dissolved gases during residual particle sampling). Scavenging efficiencies (SEs) of aerosol constituents were 0.56–0.94, 0.79–0.99, 0.71–98, and 0.67–0.92 for SO42−, NO3−, NH4+, and DOC respectively when calculated as event means with in-cloud data only. SEs estimated using data from an upwind site were substantially different in many cases, revealing the impact of gas-phase uptake (for volatile constituents) and mass losses across Mt. Schmücke likely due to physical processes such as droplet scavenging by trees and/or entrainment. Drop size-resolved cloud water concentrations of major ions SO42−, NO3−, and NH4+ revealed two main profiles: decreasing concentrations with increasing droplet size and “U” shapes. In contrast, profiles of typical coarse particle mode minor ions were often increasing with increasing drop size, highlighting the importance of a species' particle concentration size distribution for the development of size-resolved solute concentration patterns. Concentration differences between droplet size classes were typically < 2 for major ions from the three-stage collector and somewhat more pronounced from the five-stage collector, while they were much larger for minor ions. Due to a better separation of droplet populations, the five-stage collector was capable of resolving some features of solute size dependencies not seen in the three-stage data, especially sharp concentration increases (up to a factor of 5–10) in the smallest droplets for many solutes.
  • Item
    Intercomparison of air ion spectrometers: An evaluation of results in varying conditions
    (München : European Geopyhsical Union, 2011) Gagné, S.; Lehtipalo, K.; Manninen, H.E.; Nieminen, T.; Schobesberger, S.; Franchin, A.; Yli-Juuti, T.; Boulon, J.; Sonntag, A.; Mirme, S.; Mirme, A.; Hõrrak, U.; Petäjä, T.; Asmi, E.; Kulmala, M.
    We evaluated 11 air ion spectrometers from Airel Ltd. after they had spent one year in field measurements as a part of the EUCAARI project: 5 Air Ion Spectrometers (AIS), 5 Neutral cluster and Air Ion Spectrometers (NAIS) and one Airborne NAIS (ANAIS). This is the first time that an ANAIS is evaluated and compared so extensively. The ion spectrometers' mobility and concentration accuracy was evaluated. Their measurements of ambient air were compared between themselves and to reference instruments: a Differential Mobility Particle Sizer (DMPS), a Balanced Scanning Mobility Analyzer (BSMA), and an Ion-DMPS. We report on the simultaneous measurement of a new particle formation (NPF) event by all 11 instruments and the 3 reference instruments. To our knowledge, it is the first time that the size distribution of ions and particles is measured by so many ion spectrometers during a NPF event. The new particle formation rates (~0.2 cm−3 s−1 for ions and ~2 cm−3 s−1 for particles) and growth rates (~25 nm h−1 in the 3–7 nm size range) were calculated for all the instruments. The NAISs and the ANAIS gave higher concentrations and formation rates than the AISs. For example, the AISs agreed with the BSMA within 11 % and 28 % for negative and positive ion concentration respectively, whereas the NAISs agreed within 23 % and 29 %. Finally, based on the results presented here, we give guidelines for data evaluation, when data from different individual ion spectrometers are compared.
  • Item
    Size distribution and chemical composition of marine aerosols: A compilation and review
    (Milton Park : Taylor & Francis, 2016) Heintzenberg, J.; Covert, D.C.; Van Dingenen, R.
    Some 30 years of physical and chemical marine aerosol data are reviewed to derive global-size distribution parameters and inorganic particle composition on a coarse 15°×15° grid. There are large gaps in geographical and seasonal coverage and chemical and physical aerosol characterisation. About 28% of the grid cells contain physical data while there are compositional data in some 60% of the cells. The size distribution data were parametrized in terms of 2 submicrometer log-normal distributions. The sparseness of the data did not allow zonal differentiation of the distributions. By segregating the chemical data according to the major aerosol sources, sea salt, dimethylsulfide, crustal material, combustion processes and other anthropogenic sources, much information on mass concentrations and contribution of natural and anthropogenic sources to the marine aerosol can be gleaned from the data base. There are significant meridional differences in the contributions of the different sources to the marine aerosol. Very clearly, we see though that the global marine surface atmosphere is polluted by anthropogenic sulfur. Only in the case of sulfur components did the coverage allow the presentation of very coarse seasonal distributions which reflect the spring blooms in the appropriate parts of the oceans. As an example of the potential value in comparing the marine aerosol data base to chemical transport models, global seasonal meridional MSA distributions were compared to modelled MSA distributions. The general good agreement in mass concentrations is encouraging while some latitudinal discrepancies warrant further investigations covering other aerosol components such as black carbon and metals.
  • Item
    Variations in tropospheric submicron particle size distributions across the European continent 2008-2009
    (München : European Geopyhsical Union, 2014) Beddows, D.C.S.; Dall'Osto, M.; Harrison, R.M.; Kulmala, M.; Asmi, A.; Wiedensohler, A.; Laj, P.; Fjaeraa, A.M.; Sellegri, K.; Birmili, W.; Bukowiecki, N.; Weingartner, E.; Baltensperger, U.; Zdimal, V.; Zikova, N.; Putaud, J.-P.; Marinoni, A.; Tunved, P.; Hansson, H.-C.; Fiebig, M.; Kivekäs, N.; Swietlicki, E.; Lihavainen, H.; Asmi, E.; Ulevicius, V.; Aalto, P.P.; Mihalopoulos, N.; Kalivitis, N.; Kalapov, I.; Kiss, G.; de Leeuw, G.; Henzing, B.; O'Dowd, C.; Jennings, S.G.; Flentje, H.; Meinhardt, F.; Ries, L.; Denier van der Gon, H.A.C.; Visschedijk, A.J.H.
    Cluster~analysis of particle number size distributions from~background sites across Europe~is presented. This generated a total of nine clusters of particle size distributions which could be further combined into two main groups, namely: a south-to-north category (four clusters) and a west-to-east category (five clusters). The first group was identified as most frequently being detected inside and around northern Germany and neighbouring countries, showing clear evidence of local afternoon nucleation and growth events that could be linked to movement of air masses from south to north arriving ultimately at the Arctic contributing to Arctic haze.~The second group of particle size spectra proved to have narrower size distributions and collectively showed a dependence of modal diameter upon the longitude of the site (west to east) at which they were most frequently detected.~These clusters indicated regional nucleation (at the coastal sites) growing to larger modes further inland. The apparent growth rate of the modal diameter was around 0.6–0.9 nm h−1. Four specific air mass back-trajectories were successively taken as case studies to examine in real time the evolution of aerosol size distributions across Europe. ~While aerosol growth processes can be observed as aerosol traverses Europe, the processes are often obscured by the addition of aerosol by emissions en route. This study revealed that some of the 24 stations exhibit more complex behaviour than others, especially when impacted by local sources or a variety of different air masses. Overall, the aerosol size distribution clustering analysis greatly simplifies the complex data set and allows a description of aerosol aging processes, which reflects the longer-term average development of particle number size distributions as air masses advect across Europe.
  • Item
    Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: Meteorology and air mass origin dominate aerosol particle composition and size distribution
    (München : European Geopyhsical Union, 2013) Freutel, F.; Schneider, J.; Drewnick, F.; Weiden-Reinmüller, S.-L.; Crippa, M.; Prévôt, A.S.H.; Baltensperger, U.; Poulain, L.; Wiedensohler, R.A.; Sciare, J.; Sarda-Estève, R.; Burkhart, J.F.; Eckhardt, S.; Stohl, A.; Gros, V.; Colomb, A.; Michoud, V.; Doussin, J.F.; Borbon, A.; Haeffelin, M.; Morille, Y.; Beekmann, M.; Borrmann, S.
    During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively) were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively). For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be inferred from these measurements: Volume mixing ratios of 1–14 ppb of NOx, and upper limits for mass concentrations of about 1.5 μg m−3 of black carbon and of about 3 μg m−3 of hydrocarbon-like organic aerosol can be deduced which originate from both, local emissions and the overall Paris emission plume. The secondary aerosol particle phase species were found to be not significantly influenced by the Paris megacity, indicating their regional origin. The submicron aerosol mass concentrations of particulate sulphate, nitrate, and ammonium measured during time periods when air masses were advected from eastern central Europe were found to be similar to what has been found from other measurement campaigns in Paris and south-central France for this type of air mass origin, indicating that the results presented here are also more generally valid.
  • Item
    Aerosol particle formation events and analysis of high growth rates observed above a subarctic wetland-forest mosaic
    (Milton Park : Taylor & Francis, 2017) Svenningsson, Birgitta; Arneth, Almut; Hayward, Sean; Holst, Thomas; Massling, Andreas; Swietlicki, Erik; Hirsikko, Anne; Junninen, Heikki; Riipinen, Ilona; Vana, Marko; Dal Maso, Miikka; Hussein, Tareq; Kulmala, Markku
    An analysis of particle formation (PF) events over a subarctic mire in northern Swedenwas performed, based on number– size distributions of atmospheric aerosol particles (10–500 nm in diameter) and ions (0.4–40 nm in Tammet diameter). We present classification statistics for PF events from measurements covering the period July 2005–September 2006, with a break over the winter period. The PF event frequency peaked during the summer months, in contrast to other Scandinavian sites where the frequency is highest during spring and autumn. Our analysis includes calculated growth rates and estimates of concentrations and production rates of condensing vapour, deduced from the growth rates and condensational sink calculations, using AIS and SMPS data. Particle formation events with high growth rates (up to 50 nm h-1) occurred repeatedly. In these cases, the newly formed nucleation mode particles were often only present for periods of a few hours. On several occasions, repeated particle formation events were observed within 1 d, with differences in onset time of a few hours. These high growth rates were only observed when the condensation sink was higher than 0.001 s-1.
  • Item
    Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006
    (Milton Park : Taylor & Francis, 2017) Freudenthaler, Volker; Esselborn, Michael; Wiegner, Matthias; Heese, Birgit; Tesche, Matthias; Ansmann, Albert; Müller, Detlef; Althausen, Dietrich; Wirth, Martin; Fix, Andreas; Ehret, Gerhard; Knippertz, Peter; Toledano, Carlos; Gasteiger, Josef; Garhammer, Markus; Seefeldner, Meinhard
    Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.
  • Item
    Numerical simulations of mixing conditions and aerosol dynamics in the CERN CLOUD chamber
    (München : European Geopyhsical Union, 2012) Voigtländer, J.; Duplissy, J.; Rondo, L.; Kürten, A.; Stratmann, F.
    To study the effect of galactic cosmic rays on aerosols and clouds, the Cosmics Leaving OUtdoor Droplets (CLOUD) project was established. Experiments are carried out at a 26.1 m3 tank at CERN (Switzerland). In the experiments, the effect of ionizing radiation on H2SO4 particle formation and growth is investigated. To evaluate the experimental configuration, the experiment was simulated using a coupled multidimensional computational fluid dynamics (CFD) – particle model. In the model the coupled fields of gas/vapor species, temperature, flow velocity and particle properties were computed to investigate mixing state and mixing times of the CLOUD tank's contents. Simulation results show that a 1-fan configuration, as used in first experiments, may not be sufficient to ensure a homogeneously mixed chamber. To mix the tank properly, two fans and sufficiently high fan speeds are necessary. The 1/e response times for instantaneous changes of wall temperature and saturation ratio were found to be in the order of few minutes. Particle nucleation and growth was also simulated and particle number size distribution properties of the freshly nucleated particles (particle number, mean size, standard deviation of the assumed log-normal distribution) were found to be distributed over the tank's volume similar to the gas species.
  • Item
    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006–2009
    (München : European Geopyhsical Union, 2011) Heintzenberg, J.; Birmili, W.; Otto, R.; Andreae, M.O.; Mayer, J.-C.; Chi, X.; Panov, A.
    This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8° N; 89.35° E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400–500 cm−3), mid-level concentrations for zonally advected air masses from westerly directions between 55° and 65° N (600–800 cm−3), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm−3). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.