Search Results

Now showing 1 - 5 of 5
  • Item
    Long-term trends in the ionospheric F2 region with different solar activity indices
    (Göttingen : Copernicus, 2013) Mielich, J.; Bremer, J.
    A new comprehensive data collection by Damboldt and Suessmann (2012a) with monthly foF2 and M(3000)F2 median values is an excellent basis for the derivation of long-term trends in the ionospheric F2 region. Ionospheric trends have been derived only for stations with data series of at least 22 years (124 stations with foF2 data and 113 stations with M(3000)F2 data) using a twofold regression analysis depending on solar and geomagnetic activity. Three main results have been derived: Firstly, it could be shown that the solar 10.7 cm radio flux F10.7 is a better index for the description of the solar activity than the relative solar sunspot number R as well as the solar EUV proxy E10.7. Secondly, the global mean foF2 and
  • Item
    Statistical climatology of mid-latitude mesospheric summer echoes characterised by OSWIN (Ostsee-Wind) radar observations
    (Göttingen : Copernicus GmbH, 2019) Pokhotelov, D.; Stober, G.; Chau, J.L.
    Mid-latitude mesospheric summer echoes (MSEs) appear in radar observations during summer months. The geophysical factors controlling the formation of MSEs include solar and energetic particle ionisation, neutral temperature, turbulence, and meridional transport. A total of 12 years of summer months observations with the OSWIN (Ostsee-Wind) radar in Kühlungsborn, Germany, have been analysed to detect MSE events and to analyse statistical connections to these controlling factors. A more sensitive and consistent method for deriving signal-to-noise ratio has been utilised. Daily and monthly composite analysis demonstrates strong daytime preference and early summer seasonal preference for MSEs. The statistical results are not entirely conclusive due to the low-occurrence rates of MSEs. Nevertheless, it is demonstrated that the meridional transport from colder high-latitude summer mesosphere is the important controlling factor, while no clear connection to geomagnetic and solar activity is found. © 2019 Author(s).
  • Item
    The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: Morphology on global to local scales
    (München : European Geopyhsical Union, 2009) Baumgarten, G.; Fiedler, J.; Fricke, K.H.; Gerding, M.; Hervig, M.; Hoffmann, P.; Müller, N.; Pautet, P.-D.; Rapp, M.; Robert, C.; Rusch, D.; von Savigny, C.; Singer, W.
    During the ECOMA/MASS rocket campaign large scale NLC/PMC was observed by satellite, lidar and camera from polar to mid latitudes. We examine the observations from different instruments to investigate the morphology of the cloud. Satellite observations show a planetary wave 2 structure. Lidar observations from Kühlungsborn (54° N), Esrange (68° N) and ALOMAR (69° N) show a highly dynamic NLC layer. Under favorable solar illumination the cloud is also observable by ground-based cameras. The cloud was detected by cameras from Trondheim (63° N), Juliusruh (55° N) and Kühlungsborn. We investigate planetary scale morphology and local scale gravity wave structures, important for the interpretation of the small scale rocket soundings. We compare in detail the lidar observations with the NLC structure observed by the camera in Trondheim. The ALOMAR RMR-lidar observed only a faint NLC during the ECOMA launch window, while the camera in Trondheim showed a strong NLC display in the direction of ALOMAR. Using the high resolution camera observations (t~30 s, Δx<5 km) and the wind information from the meteor radar at ALOMAR we investigate the formation and destruction of NLC structures. We observe that the NLC brightness is reduced by a factor of 20–40 within 100 s which can be caused by a temperature about 15 K above the frostpoint temperature. A horizontal temperature gradient of more than 3 K/km is estimated.
  • Item
    Long-term variations of the mesospheric wind field at mid-latitudes
    (München : European Geopyhsical Union, 2007) Keuer, D.; Hoffmann, P.; Singer, W.; Bremer, J.
    Continuous MF radar observations at the station Juliusruh (54.6° N; 13.4° E) have been analysed for the time interval between 1990 and 2005, to obtain information about solar activity-induced variations, as well as long-term trends in the mesospheric wind field. Using monthly median values of the zonal and the meridional prevailing wind components, as well as of the amplitude of the semidiurnal tide, regression analyses have been carried out with a dependence on solar activity and time. The solar activity causes a significant amplification of the zonal winds during summer (increasing easterly winds) and winter (increasing westerly winds). The meridional wind component is positively correlated with the solar activity during summer but during winter the correlation is very small and non significant. Also, the solar influence upon the amplitude of the semidiurnal tidal component is relatively small (in dependence on height partly positive and partly negative) and mostly non-significant. The derived trends in the zonal wind component during summer are below an altitude of about 83 km negative and above this height positive. During the winter months the trends are nearly opposite compared with the trends in summer (transition height near 86 km). The trends in the meridional wind components are below about 85 km positive in summer (significant) and near zero (nonsignificant) in winter; above this height during both seasons negative trends have been detected. The trends in the semidiurnal tidal amplitude are at all heights positive, but only partly significant. The detected trends and solar cycle dependencies are compared with other experimental results and model calculations. There is no full agreement between the different results, probably caused by different measuring techniques and evaluation methods used. Also, different heights and observation periods investigated may contribute to the detected differences.
  • Item
    A modified index for the description of the ionospheric short- and long-term activity
    (Göttingen : Copernicus, 2010) Mielich, J.; Bremer, J.
    A modified ionospheric activity index AI has been developed on the basis of ionospheric foF2 observations. Such index can be helpful for an interested user to get information about the current state of the ionosphere. Using ionosonde data of the station Juliusruh (54.6° N; 13.4°E) this index has been tested for the time interval from January 1996 until December 2008. This index has no diurnal and seasonal variations, only a small positive dependence on the solar activity could be found. The variability of this index has, however, a marked seasonal variability with maxima during the equinoxes, a clear minimum in summer, and enhanced values in winter. The observed variability of AI is strongly correlated with the geomagnetic activity, most markedly during the equinoxes, whereas the influence of the solar activity is markedly smaller and mostly insignificant. Strong geomagnetic disturbances cause in middle latitudes in general negative disturbances in AI, mostly pronounced during equinoxes and summer and only partly during winter, thus in agreement with the current physical knowledge about ionospheric storms. © 2010 Author(s).