Search Results

Now showing 1 - 6 of 6
Loading...
Thumbnail Image
Item

Deformation characteristics of solid-state benzene as a step towards understanding planetary geology

2022, Zhang, Wenxin, Zhang, Xuan, Edwards, Bryce W., Zhong, Lei, Gao, Huajian, Malaska, Michael J., Hodyss, Robert, Greer, Julia R.

Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn’s largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan’s dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 μm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.

Loading...
Thumbnail Image
Item

Amorphous martensite in β-Ti alloys

2018, Zhang, L., Zhang, H., Ren, X., Eckert, J., Wang, Y., Zhu, Z., Gemming, T., Pauly, S.

Martensitic transformations originate from a rigidity instability, which causes a crystal to change its lattice in a displacive manner. Here, we report that the martensitic transformation on cooling in Ti-Zr-Cu-Fe alloys yields an amorphous phase instead. Metastable β-Ti partially transforms into an intragranular amorphous phase due to local lattice shear and distortion. The lenticular amorphous plates, which very much resemble α′/α″ martensite in conventional Ti alloys, have a well-defined orientation relationship with the surrounding β-Ti crystal. The present solid-state amorphization process is reversible, largely cooling rate independent and constitutes a rare case of congruent inverse melting. The observed combination of elastic softening and local lattice shear, thus, is the unifying mechanism underlying both martensitic transformations and catastrophic (inverse) melting. Not only do we reveal an alternative mechanism for solid-state amorphization but also establish an explicit experimental link between martensitic transformations and catastrophic melting.

Loading...
Thumbnail Image
Item

Structure formation of ultrathin PEO films at solid interfaces-complex pattern formation by dewetting and crystallization

2013, Braun, H.-G., Meyer, E.

The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

Loading...
Thumbnail Image
Item

Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots

2017, Huber, D., Reindl, M., Huo, Y., Huang, H., Wildmann, J.S., Schmidt, O.G., Rastelli, A., Trotta, R.

The development of scalable sources of non-classical light is fundamental to unlocking the technological potential of quantum photonics. Semiconductor quantum dots are emerging as near-optimal sources of indistinguishable single photons. However, their performance as sources of entangled-photon pairs are still modest compared to parametric down converters. Photons emitted from conventional Stranski-Krastanov InGaAs quantum dots have shown non-optimal levels of entanglement and indistinguishability. For quantum networks, both criteria must be met simultaneously. Here, we show that this is possible with a system that has received limited attention so far: GaAs quantum dots. They can emit triggered polarization-entangled photons with high purity (g (2) (0) = 0.002±0.002), high indistinguishability (0.93±0.07 for 2 ns pulse separation) and high entanglement fidelity (0.94±0.01). Our results show that GaAs might be the material of choice for quantum-dot entanglement sources in future quantum technologies.

Loading...
Thumbnail Image
Item

Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

2017, Keil, R., Zopf, M., Chen, Y., Höfer, B., Zhang, J., Ding, F., Schmidt, O.G.

Semiconductor InAs/GaAs quantum dots grown by the Stranski-Krastanov method are among the leading candidates for the deterministic generation of polarization-entangled photon pairs. Despite remarkable progress in the past 20 years, many challenges still remain for this material, such as the extremely low yield, the low degree of entanglement and the large wavelength distribution. Here, we show that with an emerging family of GaAs/AlGaAs quantum dots grown by droplet etching and nanohole infilling, it is possible to obtain a large ensemble of polarization-entangled photon emitters on a wafer without any post-growth tuning. Under pulsed resonant two-photon excitation, all measured quantum dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater - among many other key enabling quantum photonic elements.

Loading...
Thumbnail Image
Item

Studying hydrogen bonding and dynamics of the acetylate groups of the Special Pair of Rhodobacter sphaeroides WT

2019, Gräsing, Daniel, Dziubińska-Kühn, Katarzyna M., Zahn, Stefan, Alia, A., Matysik, Jörg

Although the cofactors in the bacterial reaction centre of Rhodobacter sphaeroides wild type (WT) are arranged almost symmetrically in two branches, the light-induced electron transfer occurs selectively in one branch. As origin of this functional symmetry break, a hydrogen bond between the acetyl group of PL in the primary donor and His-L168 has been discussed. In this study, we investigate the existence and rigidity of this hydrogen bond with solid-state photo-CIDNP MAS NMR methods offering information on the local electronic structure due to highly sensitive and selective NMR experiments. On the time scale of the experiment, the hydrogen bond between PL and His-L168 appears to be stable and not to be affected by illumination confirming a structural asymmetry within the Special Pair.