Search Results

Now showing 1 - 5 of 5
  • Item
    Size-resolved measurement of the mixing state of soot in the megacity Beijing, China: Diurnal cycle, aging and parameterization
    (München : European Geopyhsical Union, 2012) Cheng, Y.F.; Su, H.; Rose, D.; Gunthe, S.S.; Berghof, M.; Wehner, B.; Achtert, P.; Nowak, A.; Takegawa, N.; Kondo, Y.; Shiraiwa, M.; Gong, Y.G.; Shao, M.; Hu, M.; Zhu, T.; Zhang, Y.H.; Carmichael, G.R.; Wiedensohler, A.; Andreae, M.O.; Pöschl, U.
    Soot particles are the most efficient light absorbing aerosol species in the atmosphere, playing an important role as a driver of global warming. Their climate effects strongly depend on their mixing state, which significantly changes their light absorbing capability and cloud condensation nuclei (CCN) activity. Therefore, knowledge about the mixing state of soot and its aging mechanism becomes an important topic in the atmospheric sciences. The size-resolved (30–320 nm diameter) mixing state of soot particles in polluted megacity air was measured at a suburban site (Yufa) during the CAREBeijing 2006 campaign in Beijing, using a volatility tandem differential mobility analyzer (VTDMA). Particles in this size range with non-volatile residuals at 300 °C were considered to be soot particles. On average, the number fraction of internally mixed soot in total soot particles (Fin), decreased from 0.80 to 0.57 when initial Dp increased from 30 to 320 nm. Further analysis reveals that: (1) Fin was well correlated with the aerosol hygroscopic mixing state measured by a CCN counter. More externally mixed soot particles were observed when particles showed more heterogeneous features with regard to hygroscopicity. (2) Fin had pronounced diurnal cycles. For particles in the accumulation mode (Dp at 100–320 nm), largest Fin were observed at noon time, with "apparent" turnover rates (kex → in) up to 7.8% h−1. (3) Fin was subject to competing effects of both aging and emissions. While aging increases Fin by converting externally mixed soot particles into internally mixed ones, emissions tend to reduce Fin by emitting more fresh and externally mixed soot particles. Similar competing effects were also found with air mass age indicators. (4) Under the estimated emission intensities, actual turnover rates of soot (kex → in) up to 20% h−1 were derived, which showed a pronounced diurnal cycle peaking around noon time. This result confirms that (soot) particles are undergoing fast aging/coating with the existing high levels of condensable vapors in the megacity Beijing. (5) Diurnal cycles of Fin were different between Aitken and accumulation mode particles, which could be explained by the faster growth of smaller Aitken mode particles into larger size bins. To improve the Fin prediction in regional/global models, we suggest parameterizing Fin by an air mass aging indicator, i.e., Fin = a + bx, where a and b are empirical coefficients determined from observations, and x is the value of an air mass age indicator. At the Yufa site in the North China Plain, fitted coefficients (a, b) were determined as (0.57, 0.21), (0.47, 0.21), and (0.52, 0.0088) for x (indicators) as [NOz]/[NOy], [E]/[X] ([ethylbenzene]/[m,p-xylene]) and ([IM] + [OM])/[EC] ([inorganic + organic matter]/[elemental carbon]), respectively. Such a parameterization consumes little additional computing time, but yields a more realistic description of Fin compared with the simple treatment of soot mixing state in regional/global models.
  • Item
    Hygroscopic growth and droplet activation of soot particles: Uncoated, succinic or sulfuric acid coated
    (München : European Geopyhsical Union, 2012) Henning, S.; Ziese, M.; Kiselev, A.; Saathoff, H.; Möhler, O.; Mentel, T.F.; Buchholz, A.; Spindler, C.; Michaud, V.; Monier, M.; Sellegri, K.; Stratmann, F.
    The hygroscopic growth and droplet activation of uncoated soot particles and such coated with succinic acid and sulfuric acid were investigated during the IN-11 campaign at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility. A GFG-1000 soot generator applying either nitrogen or argon as carrier gas and a miniCAST soot generator were utilized to generate soot particles. Different organic carbon (OC) to black carbon (BC) ratios were adjusted for the CAST-soot by varying the fuel to air ratio. The hygroscopic growth was investigated by means of the mobile Leipzig Aerosol Cloud Interaction Simulator (LACIS-mobile) and two different Hygroscopicity Tandem Differential Mobility Analyzers (HTDMA, VHTDMA). Two Cloud Condensation Nucleus Counter (CCNC) were applied to measure the activation of the particles. For the untreated soot particles neither hygroscopic growth nor activation was observed at a supersaturation of 1%, with exception of a partial activation of GFG-soot generated with argon as carrier gas. Coatings of succinic acid lead to a detectable hygroscopic growth of GFG-soot and enhanced the activated fraction of GFG- (carrier gas: argon) and CAST-soot, whereas no hygroscopic growth of the coated CAST-soot was found. Sulfuric acid coatings led to an OC-content dependent hygroscopic growth of CAST-soot. Such a dependence was not observed for activation measurements. Coating with sulfuric acid decreased the amount of Polycyclic Aromatic Hydrocarbons (PAH), which were detected by AMS-measurements in the CAST-soot, and increased the amount of substances with lower molecular weight than the initial PAHs. We assume that these reaction products increased the hygroscopicity of the coated particles in addition to the coating substance itself.
  • Item
    Soot reference materials for instrument calibration and intercomparisons: A workshop summary with recommendations
    (München : European Geopyhsical Union, 2012) Baumgardner, D.; Popovicheva, O.; Allan, J.; Bernardoni, V.; Cao, J.; Cavalli, F.; Cozic, J.; Courcoux, Y.; Diapouli, E.; Eleftheriadis, K.; Genberg, P.J.; Gonzalez, C.; Gysel, M.; John, A.; Kirchstetter, T.W.; Kuhlbusch, T.A.J.; Laborde, M.; Lack, D.; Müller, T.; Niessner, R.; Petzold, A.; Piazzalunga, A.; Putaud, J.P.; Schwarz, J.; Sheridan, P.; Subramanian, R.; Swietlicki, E.; Valli, G.; Vecchi, R.; Viana, M.
    Soot, which is produced from biomass burning and the incomplete combustion of fossil and biomass fuels, has been linked to regional and global climate change and to negative health problems. Scientists measure the properties of soot using a variety of methods in order to quantify source emissions and understand its atmospheric chemistry, reactivity under emission conditions, interaction with solar radiation, influence on clouds, and health impacts. A major obstacle currently limiting progress is the absence of established standards or reference materials for calibrating the many instruments used to measure the various properties of soot. The current state of availability and practicability of soot standard reference materials (SRMs) was reviewed by a group of 50 international experts during a workshop in June of 2011. The workshop was convened to summarize the current knowledge on soot measurement techniques, identify the measurement uncertainties and limitations related to the lack of soot SRMs, and identify attributes of SRMs that, if developed, would reduce measurement uncertainties. The workshop established that suitable SRMs are available for calibrating some, but not all, measurement methods. The community of users of the single-particle soot-photometer (SP2), an instrument using laser-induced incandescence, identified a suitable SRM, fullerene soot, but users of instruments that measure light absorption by soot collected on filters did not. Similarly, those who use thermal optical analysis (TOA) to analyze the organic and elemental carbon components of soot were not satisfied with current SRMs. The workshop, and subsequent, interactive discussions, produced a number of recommendations for the development of new SRMs, and their implementation, that would be suitable for the different soot measurement methods.
  • Item
    Influx of African biomass burning aerosol during the Amazonian dry season through layered transatlantic transport of black carbon-rich smoke
    (Katlenburg-Lindau : EGU, 2020) Holanda, Bruna A.; Pöhlker, Mira L.; Walter, David; Saturno, Jorge; Sörgel, Matthias; Ditas, Jeannine; Ditas, Florian; Schulz, Christiane; Aurélio Franco, Marco; Wang, Qiaoqiao; Donth, Tobias; Artaxo, Paulo; Barbosa, Henrique M.J.; Borrmann, Stephan; Braga, Ramon; Brito, Joel; Cheng, Yafang; Dollner, Maximilian; Kaiser, JohannesW.; Klimach, Thomas; Knote, Christoph; Krüger, Ovid O.; Fütterer, Daniel; Lavrič, Jošt V.; Ma, Nan; Machado, Luiz A.T.; Ming, Jing; Morais, Fernando G.; Paulsen, Hauke; Sauer, Daniel; Schlager, Hans; Schneider, Johannes; Su, Hang; Weinzierl, Bernadett; Walser, Adrian; Wendisch, Manfred; Ziereis, Helmut; Zöger, Martin; Pöschl, Ulrich; Andreae, Meinrat O.; Pöhlker, Christopher
    Black carbon (BC) aerosols influence the Earth's atmosphere and climate, but their microphysical properties, spatiotemporal distribution, and long-range transport are not well constrained. This study presents airborne observations of the transatlantic transport of BC-rich African biomass burning (BB) smoke into the Amazon Basin using a Single Particle Soot Photometer (SP2) as well as several complementary techniques. We base our results on observations of aerosols and trace gases off the Brazilian coast onboard the HALO (High Altitude and LOng range) research aircraft during the ACRIDICON-CHUVA campaign in September 2014. During flight AC19 over land and ocean at the northeastern coastline of the Amazon Basin, we observed a BCrich layer at ∼ 3:5 km altitude with a vertical extension of ∼ 0:3 km. Backward trajectories suggest that fires in African grasslands, savannas, and shrublands were the main source of this pollution layer and that the observed BB smoke had undergone more than 10 d of atmospheric transport and aging over the South Atlantic before reaching the Amazon Basin. The aged smoke is characterized by a dominant accumulation mode, centered at about 130 nm, with a particle concentration of Nacc D 850±330 cm-3. The rBC particles account for ∼ 15 % of the submicrometer aerosol mass and ∼ 40 % of the total aerosol number concentration. This corresponds to a mass concentration range from 0.5 to 2 μ g m-3 (1st to 99th percentiles) and a number concentration range from 90 to 530 cm-3. Along with rBC, high cCO (150 ± 30 ppb) and cO3 (56 ± 9 ppb) mixing ratios support the biomass burning origin and pronounced photochemical aging of this layer. Upon reaching the Amazon Basin, it started to broaden and to subside, due to convective mixing and entrainment of the BB aerosol into the boundary layer. Satellite observations show that the transatlantic transport of pollution layers is a frequently occurring process, seasonally peaking in August/September. By analyzing the aircraft observations together with the long-term data from the Amazon Tall Tower Observatory (ATTO), we found that the transatlantic transport of African BB smoke layers has a strong impact on the northern and central Amazonian aerosol population during the BBinfluenced season (July to December). In fact, the early BB season (July to September) in this part of the Amazon appears to be dominated by African smoke, whereas the later BB season (October to December) appears to be dominated by South American fires. This dichotomy is reflected in pronounced changes in aerosol optical properties such as the single scattering albedo (increasing from 0.85 in August to 0.90 in November) and the BC-to-CO enhancement ratio (decreasing from 11 to 6 ng m-3 ppb-1). Our results suggest that, despite the high fraction of BC particles, the African BB aerosol acts as efficient cloud condensation nuclei (CCN), with potentially important implications for aerosol-cloud interactions and the hydrological cycle in the Amazon. © 2020 Author(s).
  • Item
    Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1
    (Milton Park : Taylor & Francis, 2017) Müller, T.; Schladitz, A.; Massling, A.; Kaaden, N.; Kandler, K.; Wiedensohler, A.
    During the SAMUM-1 experiment, absorption coefficients and imaginary parts of refractive indices of mineral dust particles were investigated in southern Morocco. Main absorbing constituents of airborne samples were identified to be iron oxide and soot. Spectral absorption coefficients were measured using a spectral optical absorption photometer (SOAP) in the wavelength range from 300 to 800 nm with a resolution of 50 nm. A new method that accounts for a loading-dependent correction of fibre filter based absorption photometers, was developed. The imaginary part of the refractive index was determined using Mie calculations from 350 to 800 nm. The spectral absorption coefficient allowed a separation between dust and soot absorption. A correlation analysis showed that the dust absorption coefficient is correlated (R2 up to 0.55) with the particle number concentration for particle diameters larger than 0.5 μm, whereas the coefficient of determination R2 for smaller particles is below 0.1. Refractive indices were derived for both the total aerosol and a dust aerosol that was corrected for soot absorption. Average imaginary parts of refractive indices of the entire aerosol are 7.4 × 10−3, 3.4 × 10−3 and 2.0 × 10−3 at wavelengths of 450, 550 and 650 nm. After a correction for the soot absorption, imaginary parts of refractive indices are 5.1 × 10−3, 1.6 × 10−3 and 4.5 × 10−4.