Search Results

Now showing 1 - 4 of 4
  • Item
    The GAPS Programme at TNG: XXXV. Fundamental properties of transiting exoplanet host stars
    (Les Ulis : EDP Sciences, 2022) Biazzo, K.; D’Orazi, V.; Desidera, S.; Turrini, D.; Benatti, S.; Gratton, R.; Magrini, L.; Sozzetti, A.; Baratella, M.; Bonomo, A.S.; Borsa, F.; Claudi, R.; Covino, E.; Damasso, M.; Di Mauro, M.P.; Lanza, A.F.; Maggio, A.; Malavolta, L.; Maldonado, J.; Marzari, F.; Micela, G.; Poretti, E.; Vitello, F.; Affer, L.; Bignamini, A.; Carleo, I.; Cosentino, R.; Fiorenzano, A.F.M.; Giacobbe, P.; Harutyunyan, A.; Leto, G.; Mancini, L.; Molinari, E.; Molinaro, M.; Nardiello, D.; Nascimbeni, V.; Pagano, I.; Pedani, M.; Piotto, G.; Rainer, M.; Scandariato, G.
    Context. Exoplanetary properties strongly depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Aims. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the Global Architecture of Planetary System program. For the wide visual binary XO-2, we considered both components (N: hosting a transiting planet; S: without a known transiting planet). Our final goal is to widely analyze the sample by deriving several stellar properties, abundances of many elements, kinematic parameters, and discuss them in the context of planetary formation. Methods. We determined the stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at TNG and FEROS at ESO spectra and uniform techniques. Depending on stellar parameters and chemical elements, we used line equivalent widths or spectral synthesis methods. We derived kinematic properties taking advantage of Gaia data and for the first time in exoplanet host stars we estimated ages using elemental ratios as chemical clocks. Results. The effective temperature of our stars is ∼4400-6700 K, while the iron abundance [Fe/H] is within -0.3 and 0.4 dex. Lithium is present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H] are consistent with the Galactic chemical evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O < 0.8, compatible with Si present in rock-forming minerals. Mean C/O and [C/O] values are slightly lower than for the Sun. Most of targets show 1.0 < Mg/Si < 1.5, compatible with Mg distributed between olivine and pyroxene, and mean Mg/Si lower than for the Sun. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemodynamical analysis we find agreement between ages and position within the Galactic disk. Finally, we note a tendency for higher-density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles (e.g., O) for lower-mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. Conclusions. We try to trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars. This kind of study will be useful for upcoming space mission data to get more insights into the formation-migration mechanisms.
  • Item
    The GAPS Programme at TNG XXXVII. A precise density measurement of the young ultra-short period planet TOI-1807 b
    (Les Ulis : EDP Sciences, 2022) Nardiello, D.; Malavolta, L.; Desidera, S.; Baratella, M.; D’Orazi, V.; Messina, S.; Biazzo, K.; Benatti, S.; Damasso, M.; Rajpaul, V.M.; Bonomo, A.S.; Capuzzo Dolcetta, R.; Mallonn, M.; Cale, B.; Plavchan, P.; El Mufti, M.; Bignamini, A.; Borsa, F.; Carleo, I.; Claudi, R.; Covino, E.; Lanza, A.F.; Maldonado, J.; Mancini, L.; Micela, G.; Molinari, E.; Pinamonti, M.; Piotto, G.; Poretti, E.; Scandariato, G.; Sozzetti, A.; Andreuzzi, G.; Boschin, W.; Cosentino, R.; Fiorenzano, A.F.M.; Harutyunyan, A.; Knapic, C.; Pedani, M.; Affer, L.; Maggio, A.; Rainer, M.
    Context. Great strides have been made in recent years in the understanding of the mechanisms involved in the formation and evolution of planetary systems. Despite this, many observational findings have not yet been corroborated by astrophysical explanations. A fine contribution to the study of planetary formation processes comes from the study of young, low-mass planets, with short orbital periods (.100 days). In the last three years, the NASA/TESS satellite has identified many planets of this kind and their characterization is clearly necessary in order to understand how they formed and evolved. Aims. Within the framework of the Global Architecture of Planetary System (GAPS) project, we performed a validation and characterization (radius and mass) of the ultra-short period planet TOI-1807 b, which orbits its young host star BD+39 2643 (∼300 Myr) in only 13 h. This is the youngest ultra-short period planet discovered so far. Methods. Thanks to a joint modeling of the stellar activity and planetary signals in the TESS light curve and in new HARPS-N radial-velocity measurements, combined with accurate estimation of stellar parameters, we validated the planetary nature of TOI-1807 b and measured its orbital and physical parameters. Results. By using astrometric, photometric, and spectroscopic observations, we found that BD+39 2643 is a young, active K dwarf star and a member of a 300 ± 80 Myr old moving group. Furthermore, it rotates in Prot = 8.8 ± 0.1 days. This star hosts an ultra-short period planet, exhibiting an orbital period of only Pb = 0.54937 ± 0.00001 days. Thanks to the exquisite photometric and spectroscopic series, along with the accurate information on its stellar activity, we measured both the radius and the mass of TOI-1807 b with high precision, obtaining RP,b = 1.37 ± 0.09 R⊕ and MP,b = 2.57 ± 0.50 M⊕. These planet parameters correspond to a rocky planet with an Earth-like density (ρb = 1.0 ± 0.3 ρ⊕) and no extended H/He envelope. From the analysis of the age-RP distribution for planets with well measured ages, we inferred that TOI-1807 b may have already lost a large part of its atmosphere over the course of its 300 Myr lifetime.
  • Item
    Cool stars in the Galactic center as seen by APOGEE : M giants, AGB stars, and supergiant stars and candidates
    (Les Ulis : EDP Sciences, 2020) Schultheis, M.; Rojas-Arriagada, A.; Cunha, K.; Zoccali, M.; Chiappini, C.; Zasowski, G.; Queiroz, A.B.A.; Minniti, D.; Fritz, T.; García-Hernández, D.A.; Nitschelm, C.; Zamora, O.; Hasselquist, S.; Fernández-Trincado, J.G.; Munoz, R.R.
    The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5 dex, which is 0.2 dex poorer than Baade’s Window. The α-elements Mg, Si, Ca, and O show a similar trend to the Galactic bulge. The metal-poor component is enhanced in the α-elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high-velocity stars with vgal >  300 km s−1; the metal-rich stars show a much higher rotation velocity (∼200 km s−1) with respect to the metal-poor stars (∼140 km s−1). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disk and the nuclear star cluster show distinct chemical signatures and might be formed differently.
  • Item
    On the binary orbit of Henry Draper one (HD 1)
    (Berlin : Wiley-VCH Verl., 2020) Strassmeier, Klaus G.; Weber, Michael
    We present our final orbit for the late-type spectroscopic binary Henry Draper one (HD 1). area total of 553 spectra from 13 years of observations are used with our robotic STELLA facility and its high-resolution echelle spectrograph SES. Its long-term radial velocity stability is ≈50 m s−1. A single radial velocity of HD 1 reached an rms residual of 63 m s−1, close to the expected precision. Spectral lines of HD 1 are rotationally broadened with a v sin i of 9.1±0.1 km s−1. The overall spectrum appears single-lined and yielded an orbit with an eccentricity of 0.5056±0.0005 and a semiamplitude of 4.44 km s−1. We constrain and refine the orbital period based on the SES data alone to 2, 318.70±0.32 days, compared to 2, 317.8±1.1 days when including the older dataset published by DAO and Cambridge/Coravel. Owing to the higher precision of the SES data, we base the orbit calculation only on the STELLA/SES velocities so as to not degrade its solution. We redetermine astrophysical parameters for HD 1 from spectrum synthesis and, together with the new Gaia DR-2 parallax, suggest a higher luminosity than published previously.We conclude thatHD1 is a slightly metal-deficient K0 III-II giant 217 times more luminous than the Sun. The secondary remains invisible at optical wavelengths. We present evidence for the existence of a third component.