Search Results

Now showing 1 - 3 of 3
Loading...
Thumbnail Image
Item

Quantitative analysis of F-actin alterations in adherent human mesenchymal stem cells: Influence of slow-freezing and vitrification-based cryopreservation

2019, Müllers, Yannik, Meiser, Ina, Stracke, Frank, Riemann, Iris, Lautenschläger, Franziska, Neubauer, Julia C., Zimmermann, Heiko

Cryopreservation is an essential tool to meet the increasing demand for stem cells in medical applications. To ensure maintenance of cell function upon thawing, the preservation of the actin cytoskeleton is crucial, but so far there is little quantitative data on the influence of cryopreservation on cytoskeletal structures. For this reason, our study aims to quantitatively describe cryopreservation induced alterations to F-actin in adherent human mesenchymal stem cells, as a basic model for biomedical applications. Here we have characterised the actin cytoskeleton on single-cell level by calculating the circular standard deviation of filament orientation, F-actin content, and average filament length. Cryo-induced alterations of these parameters in identical cells pre and post cryopreservation provide the basis of our investigation. Differences between the impact of slow-freezing and vitrification are qualitatively analyzed and highlighted. Our analysis is supported by live cryo imaging of the actin cytoskeleton via two photon microscopy. We found similar actin alterations in slow-frozen and vitrified cells including buckling of actin filaments, reduction of F-actin content and filament shortening. These alterations indicate limited functionality of the respective cells. However, there are substantial differences in the frequency and time dependence of F-actin disruptions among the applied cryopreservation strategies; immediately after thawing, cytoskeletal structures show least disruption after slow freezing at a rate of 1°C/min. As post-thaw recovery progresses, the ratio of cells with actin disruptions increases, particularly in slow frozen cells. After 120 min of recovery the proportion of cells with an intact actin cytoskeleton is higher in vitrified than in slow frozen cells. Freezing at 10°C/min is associated with a high ratio of impaired cells throughout the post-thawing culture.

Loading...
Thumbnail Image
Item

Growth induction and low-oxygen apoptosis inhibition of human CD34 + progenitors in collagen gels

2013, Avitabile, D., Salchert, K., Werner, C., Capogrossi, M.C., Pesce, M.

Various reports have indicated low survival of injected progenitors into unfavorable environments such as the ischemic myocardium or lower limb tissues. This represents a major bottleneck in stem-cell-based cardiovascular regenerative medicine. Strategies to enhance survival of these cells in recipient tissues have been therefore sought to improve stem cell survival and ensure long-term engraftment. In the present contribution, we show that embedding human cord blood-derived CD34+ cells into a collagen I-based hydrogel containing cytokines is a suitable strategy to promote stem cell proliferation and protect these cells from anoxia-induced apoptosis.

No Thumbnail Available
Item

Gradients of Al/Al2O3 nanostructures for screening mesenchymal stem cell proliferation and differentiation

2013, Veith, Michael, Dufloux, Cécile, Ghaemi, Soraya Rasi, Cenk, Aktas, Voelcker, Nicolas H.

By decomposing a molecular precursor we fabricated a novel surface based on an aluminium/aluminiumoxide composite incorporating nanotopography gradient to address high-throughput and fast analysis method for studying stem cell differentiation by nanostructures. Depending on the topography of the nanostructures, mesenchymal stem cells exhibit a diverse proliferation and differentiation behavior.