Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity

2013, Eliseev, A.V., Coumou, D., Chernokulsky, A.V., Petoukhov, V., Petri, S.

In this study we present a scheme for calculating the characteristics of multi-layer cloudiness and precipitation for Earth system models of intermediate complexity (EMICs). This scheme considers three-layer stratiform cloudiness and single-column convective clouds. It distinguishes between ice and droplet clouds as well. Precipitation is calculated by using cloud lifetime, which depends on cloud type and phase as well as on statistics of synoptic and convective disturbances. The scheme is tuned to observations by using an ensemble simulation forced by the ERA-40-derived climatology for 1979–2001. Upon calibration, the scheme realistically reproduces basic features of fields of cloud fractions, cloud water path, and precipitation. The simulated globally and annually averaged total cloud fraction is 0.59, and the simulated globally averaged annual precipitation is 100 cm yr−1. Both values agree with empirically derived values. The simulated cloud water path is too small, probably because the simulated vertical extent of stratiform clouds is too small. Geographical distribution and seasonal changes of calculated cloud fraction and precipitation are broadly realistic as well. However, some important regional biases still remain in the scheme, e.g. too little precipitation in the tropics. We discuss possibilities for future improvements in the scheme.

Loading...
Thumbnail Image
Item

Observation of a Self-Limiting, Shear-Induced Turbulent Inversion Layer Above Marine Stratocumulus

2012, Katzwinkel, J., Siebert, H., Shaw, R.A.

High-resolution measurements of thermodynamic, microphysical, and turbulence properties inside a turbulent inversion layer above a marine stratocumulus cloud layer are presented. The measurements are performed with the helicopter-towed measurement payload Airborne Cloud Turbulence Observation System (ACTOS), which allows for sampling with low true air speeds and steep profiles through cloud top. Vertical profiles show that the turbulent inversion layer consists of clear air above the cloud top, with nearly linear profiles of potential temperature, horizontal wind speed, absolute humidity, and concentration of interstitial aerosol. The layer is turbulent, with an energy dissipation rate nearly the same as that in the lower cloud, suggesting that the two are actively coupled, but with significant anisotropic turbulence at the large scales within the turbulent inversion layer. The turbulent inversion layer is traversed six times and the layer thickness is observed to vary between 37 and 85 m, whereas the potential temperature and horizontal wind speed differences at the top and bottom of the layer remain essentially constant. The Richardson number therefore increases with increasing layer thickness, from approximately 0. 2 to 0. 7, suggesting that the layer develops to the point where shear production of turbulence is sufficiently weak to be balanced by buoyancy suppression. This picture is consistent with prior numerical simulations of the evolution of turbulence in localized stratified shear layers. It is observed that the large eddy scale is suppressed by buoyancy and is on the order of the Ozmidov scale, much less than the thickness of the turbulent inversion layer, such that direct mixing between the cloud top and the free troposphere is inhibited, and the entrainment velocity tends to decrease with increasing turbulent inversion-layer thickness. Qualitatively, the turbulent inversion layer likely grows through nibbling rather than engulfment.