Search Results

Now showing 1 - 7 of 7
  • Item
    Keratin homogeneity in the tail feathers of Pavo cristatus and Pavo cristatus mut. alba
    (San Diego, Calif. : Elsevier, 2010) Pabisch, S.; Puchegger, S.; Kirchner, H.O.K.; Weiss, I.M.; Peterlik, H.
    The keratin structure in the cortex of peacocks' feathers is studied by X-ray diffraction along the feather, from the calamus to the tip. It changes considerably over the first 5. cm close to the calamus and remains constant for about 1. m along the length of the feather. Close to the tip, the structure loses its high degree of order. We attribute the X-ray patterns to a shrinkage of a cylindrical arrangement of β-sheets, which is not fully formed initially. In the final structure, the crystalline beta-cores are fixed by the rest of the keratin molecule. The hydrophobic residues of the beta-core are locked into a zip-like arrangement. Structurally there is no difference between the blue and the white bird. © 2010 Elsevier Inc.
  • Item
    Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying
    (San Francisco, California, US : PLOS, 2021) Schu, Moritz; Terriac, Emmanuel; Koch, Marcus; Paschke, Stephan; Lautenschläger, Franziska; Flormann, Daniel A.D.
    The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.
  • Item
    Structure formation of ultrathin PEO films at solid interfaces-complex pattern formation by dewetting and crystallization
    (Basel : MDPI AG, 2013) Braun, H.-G.; Meyer, E.
    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm) result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.
  • Item
    Anti-Prion Drug mPPIg5 Inhibits PrPC Conversion to PrPSc
    (San Francisco, CA : Public Library of Science, 2013) McCarthy, J.M.; Franke, M.; Resenberger, U.K.; Waldron, S.; Simpson, J.C.; Tatzelt, J.; Appelhans, D.; Rogers, M.S.
    Prion diseases, also known as transmissible spongiform encephalopathies, are a group of fatal neurodegenerative diseases that include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 'protein only hypothesis' advocates that PrPSc, an abnormal isoform of the cellular protein PrPC, is the main and possibly sole component of prion infectious agents. Currently, no effective therapy exists for these diseases at the symptomatic phase for either humans or animals, though a number of compounds have demonstrated the ability to eliminate PrPSc in cell culture models. Of particular interest are synthetic polymers known as dendrimers which possess the unique ability to eliminate PrPSc in both an intracellular and in vitro setting. The efficacy and mode of action of the novel anti-prion dendrimer mPPIg5 was investigated through the creation of a number of innovative bio-assays based upon the scrapie cell assay. These assays were used to demonstrate that mPPIg5 is a highly effective anti-prion drug which acts, at least in part, through the inhibition of PrPC to PrPSc conversion. Understanding how a drug works is a vital component in maximising its performance. By establishing the efficacy and method of action of mPPIg5, this study will help determine which drugs are most likely to enhance this effect and also aid the design of dendrimers with anti-prion capabilities for the future.
  • Item
    Smart skin patterns protect springtails
    (San Francisco, CA : Public Library of Science, 2011) Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C.
    Springtails, arthropods who live in soil, in decaying material, and on plants, have adapted to demanding conditions by evolving extremely effective and robust anti-adhesive skin patterns. However, details of these unique properties and their structural basis are still unknown. Here we demonstrate that collembolan skin can resist wetting by many organic liquids and at elevated pressures. We show that the combination of bristles and a comb-like hexagonal or rhombic mesh of interconnected nanoscopic granules distinguish the skin of springtails from anti-adhesive plant surfaces. Furthermore, the negative overhang in the profile of the ridges and granules were revealed to be a highly effective, but as yet neglected, design principle of collembolan skin. We suggest an explanation for the non-wetting characteristics of surfaces consisting of such profiles irrespective of the chemical composition. Many valuable opportunities arise from the translation of the described comb-like patterns and overhanging profiles of collembolan skin into man-made surfaces that combine stability against wear and friction with superior non-wetting and anti-adhesive characteristics.
  • Item
    Two types of magnetic shape-memory effects from twinned microstructure and magneto-structural coupling in Fe1 +yTe
    (Washington : National Academy of Sciences, 2019) Rößler, S.; Koz, C.; Wang, Z.; Skourski, Y.; Doerr, M.; Kasinathan, D.; Rosner, H.; Schmidt, M.; Schwarz, U.; Rößler, U.K.; Wirth, S.
    A detailed experimental investigation of Fe1+yTe (y = 0.11, 0.12) using pulsed magnetic fields up to 60 T confirms remarkable magnetic shape-memory (MSM) effects. These effects result from magnetoelastic transformation processes in the low-temperature antiferromagnetic state of these materials. The observation of modulated and finely twinned microstructure at the nanoscale through scanning tunneling microscopy establishes a behavior similar to that of thermoelastic martensite. We identified the observed, elegant hierarchical twinning pattern of monoclinic crystallographic domains as an ideal realization of crossing twin bands. The antiferromagnetism of the monoclinic ground state allows for a magnetic-field–induced reorientation of these twin variants by the motion of one type of twin boundaries. At sufficiently high magnetic fields, we observed a second isothermal transformation process with large hysteresis for different directions of applied field. This gives rise to a second MSM effect caused by a phase transition back to the field-polarized tetragonal lattice state.
  • Item
    Synthetic 3D PEG-Anisogel Tailored with Fibronectin Fragments Induce Aligned Nerve Extension
    (Columbus, Ohio : American Chemical Society, 2019) Licht, Christopher; Rose, Jonas C.; Anarkoli, Abdolrahman Omidinia; Blondel, Delphine; Roccio, Marta; Haraszti, Tamás; Gehlen, David B.; Hubbell, Jeffrey A.; Lutolf, Matthias P.; De Laporte, Laura
    An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was engineered to promote and align nerve cells in a three-dimensional manner. To render the injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1 w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear neurite extension and represents a large step in the direction of clinical translation with the opportunity to treat acute spinal cord injuries.