Search Results

Now showing 1 - 5 of 5
  • Item
    Enhanced stratosphere/troposphere coupling during extreme warm stratospheric events with strong polar-night jet oscillation
    (Basel : MDPI AG, 2018) Peters, D.H.W.; Schneidereit, A.; Karpechko, A.Y.
    Extreme warm stratospheric events during polar winters from ERA-Interim reanalysis and CMIP5-ESM-LR runs were separated by duration and strength of the polar-night jet oscillation (PJO) using a high statistical confidence level of three standard deviations (strong-PJO events). With a composite analysis, we demonstrate that strong-PJO events show a significantly stronger downward propagating signal in both, northern annular mode (NAM) and zonal mean zonal wind anomaly in the stratosphere in comparison with non-PJO events. The lower stratospheric EP-flux-divergence difference in ERA-Interim was stronger in comparison to long-term CMIP5-ESM-LR runs (by a factor of four). This suggests that stratosphere-troposphere coupling is stronger in ERA-Interim than in CMIP5-ESM-LR. During the 60 days following the central date (CD), the Arctic oscillation signal was more intense during strong-PJO events than during non-PJO events in ERA-Interim data in comparison to CMIP5-ESM-LR runs. During the 15-day phase after CD, strong PJO events had a significant increase in stratospheric ozone, upper tropospheric zonally asymmetric impact, and a regional surface impact in ERA-Interim. Finally, we conclude that the applied high statistical threshold gives a clearer separation of extreme warm stratospheric events into strong-PJO events and non-PJO events including their different downward propagating NAM signal and tropospheric impacts. © 2018 by the authors.
  • Item
    Gravity waves excited during a minor sudden stratospheric warming
    (Katlenburg-Lindau : EGU, 2018-9-7) Dörnbrack, Andreas; Gisinger, Sonja; Kaifler, Natalie; Portele, Tanja Christina; Bramberger, Martina; Rapp, Markus; Gerding, Michael; Söder, Jens; Žagar, Nedjeljka; Jelić, Damjan
    An exceptionally deep upper-air sounding launched from Kiruna airport (67.82∘ N, 20.33∘ E) on 30 January 2016 stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. Upward-propagating inertia-gravity waves in the upper stratosphere and downward-propagating modes in the lower stratosphere indicated a region of gravity wave generation in the stratosphere. Two-dimensional wavelet analysis was applied to vertical time series of temperature fluctuations in order to determine the vertical propagation direction of the stratospheric gravity waves in 1-hourly high-resolution meteorological analyses and short-term forecasts. The separation of upward- and downward-propagating waves provided further evidence for a stratospheric source of gravity waves. The scale-dependent decomposition of the flow into a balanced component and inertia-gravity waves showed that coherent wave packets preferentially occurred at the inner edge of the Arctic polar vortex where a sub-vortex formed during the minor SSW.
  • Item
    Mesospheric semidiurnal tides and near-12 h waves through jointly analyzing observations of five specular meteor radars from three longitudinal sectors at boreal midlatitudes
    (Göttingen : Copernicus GmbH, 2019) He, M.; Chau, J.L.

    In the last decades, mesospheric tides have been intensively investigated with observations from both ground-based radars and satellites. Single-site radar observations provide continuous measurements at fixed locations without horizontal information, whereas single-spacecraft missions typically provide global coverage with limited temporal coverage at a given location. In this work, by combining 8 years (2009-2016) of mesospheric winds collected by five specular meteor radars from three different longitudinal sectors at boreal midlatitudes (49±8.5ĝ N), we develop an approach to investigate the most intense global-scale oscillation, namely at the period TCombining double low line12±0.5 h. Six waves are resolved: The semidiurnal westward-Traveling tidal modes with zonal wave numbers 1, 2, and 3 (SW1, SW2, SW3), the lunar semidiurnal tide M2, and the upper and lower sidebands (USB and LSB) of the 16 d wave nonlinear modulation on SW2. The temporal variations of the waves are studied statistically with a special focus on their responses to sudden stratospheric warming events (SSWs) and on their climatological seasonal variations. In response to SSWs, USB, LSB, and M2 enhance, while SW2 decreases. However, SW1 and SW3 do not respond noticeably to SSWs, contrary to the broadly reported enhancements in the literature. The USB, LSB, and SW2 responses could be explained in terms of energy exchange through the nonlinear modulation, while LSB and USB might previously have been misinterpreted as SW1 and SW3, respectively. Besides, we find that LSB and M2 enhancements depend on the SSW classification with respect to the associated split or displacement of the polar vortex. In the case of seasonal variations, our results are qualitatively consistent with previous studies and show a moderate correlation with an empirical tidal model derived from satellite observations.

    © Author(s) 2019.
  • Item
    September 2019 Antarctic Sudden Stratospheric Warming: Quasi-6-Day Wave Burst and Ionospheric Effects
    (Hoboken, NJ [u.a.] : Wiley, 2020) Yamazaki, Y.; Matthias, V.; Miyoshi, Y.; Stolle, C.; Siddiqui, T.; Kervalishvili, G.; Laštovička, J.; Kozubek, M.; Ward, W.; Themens, D.R.; Kristoffersen, S.; Alken, P.
    An exceptionally strong stationary planetary wave with Zonal Wavenumber 1 led to a sudden stratospheric warming (SSW) in the Southern Hemisphere in September 2019. Ionospheric data from European Space Agency's Swarm satellite constellation mission show prominent 6-day variations in the dayside low-latitude region at this time, which can be attributed to forcing from the middle atmosphere by the Rossby normal mode “quasi-6-day wave” (Q6DW). Geopotential height measurements by the Microwave Limb Sounder aboard National Aeronautics and Space Administration's Aura satellite reveal a burst of global Q6DW activity in the mesosphere and lower thermosphere during the SSW, which is one of the strongest in the record. The Q6DW is apparently generated in the polar stratosphere at 30–40 km, where the atmosphere is unstable due to strong vertical wind shear connected with planetary wave breaking. These results suggest that an Antarctic SSW can lead to ionospheric variability through wave forcing from the middle atmosphere. ©2020. The Authors.
  • Item
    The different stratospheric influence on cold-extremes in Eurasia and North America
    (London : Springer Nature, 2018) Kretschmer, Marlene; Cohen, Judah; Matthias, Vivien; Runge, Jakob; Coumou, Dim
    The stratospheric polar vortex can influence the tropospheric circulation and thereby winter weather in the mid-latitudes. Weak vortex states, often associated with sudden stratospheric warmings (SSW), have been shown to increase the risk of cold-spells especially over Eurasia, but its role for North American winters is less clear. Using cluster analysis, we show that there are two dominant patterns of increased polar cap heights in the lower stratosphere. Both patterns represent a weak polar vortex but they are associated with different wave mechanisms and different regional tropospheric impacts. The first pattern is zonally symmetric and associated with absorbed upward-propagating wave activity, leading to a negative phase of the North Atlantic Oscillation (NAO) and cold-air outbreaks over northern Eurasia. This coupling mechanism is well-documented in the literature and is consistent with the downward migration of the northern annular mode (NAM). The second pattern is zonally asymmetric and linked to downward reflected planetary waves over Canada followed by a negative phase of the Western Pacific Oscillation (WPO) and cold-spells in Central Canada and the Great Lakes region. Causal effect network (CEN) analyses confirm the atmospheric pathways associated with this asymmetric pattern. Moreover, our findings suggest the reflective mechanism to be sensitive to the exact region of upward wave-activity fluxes and to be state-dependent on the strength of the vortex. Identifying the causal pathways that operate on weekly to monthly timescales can pave the way for improved sub-seasonal to seasonal forecasting of cold spells in the mid-latitudes.