Search Results

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Item

Electrical Modelling of Switching Arcs in a Low Voltage Relay at Low Currents

2020, Najam, Ammar, Pieterse, Petrus, Uhrlandt, Dirk

The arc behaviour of short, low current switching arcs is not well understood and lacks a reliable model. In this work, the behaviour of an arc in the air is studied during contact separation at low DC currents (0.5 A to 20 A) and for small gap lengths (0 mm to 6 mm). The experiments are performed on a low voltage relay with two different electrode configurations. The arc voltage is measured during the opening of the contacts at constant current. The arc length is determined optically by tracing the mean path of the arc over time from a series of high-speed images. From the synchronised data of voltage vs. distance, first a sudden jump of the voltage at the start of contact opening is observed. Secondly, a sudden change in the voltage gradient occurs as the arc is elongated. Short arcs with a length up to approximately 1.25 mm show an intense radiation in the overall gap region and high voltage gradients. An unexpected behaviour never reported before was observed for longer arcs at low current: Two characteristic regions occur, a region in front of the cathode, with a length of approximately 1.25 mm, having an intense radiation and a high voltage gradient as well as a region of much lower radiation intensity and a comparatively lower voltage gradient in the remaining gap area despite a small anode spot region. The characteristic border of approximately 1.25 mm is almost independent of the current. A generalised arc voltage model is proposed based on the assumption that a constant sheath voltage and two discrete field regions exist, which are modelled as two independent linear functions of voltage vs. length. The data for various currents is combined to yield a general non-linear function for predicting the arc voltage vs. arc length and current.

Loading...
Thumbnail Image
Item

Investigation of an Ablation-dominated Arc in a Model Chamber by Optical Emission Spectroscopy

2017, Methling, R., Khakpour, A., Wetzeler, S., Uhrlandt, D.

A switching arc in a model chamber is investigated by means of optical emission spectroscopy. Ignition wire is applied to initiate an arc of several kiloampere between tungsten−copper electrodes. Radiation emitted by the arc plasma is absorbed by a surrounding PTFE nozzle, leading to an ablation–dominated discharge. Video spectroscopy is carried out using an imaging spectrometer combined with a high–speed video camera. Carbon ion and fluorine atom line emission from the heating channel as well as copper, oxygen and nitrogen from ignition wire and ambient air are analyzed with focus on the low–current phases at the beginning of discharge and near current zero. Additionally, electrical parameters and total pressure are recorded while the general behavior of the discharge is observed by another video camera. Considering rotational symmetry of the arc the corresponding radial emission coefficients are determined. Finally, radial temperature profiles are calculated.