Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Item

Cartesian product of synchronization transitions and hysteresis

2017, Wang, C., Zou, Y., Guan, S., Kurths, J.

We present theoretical results when applying the Cartesian product of two Kuramoto models on different network topologies. By a detailed mathematical analysis, we prove that the dynamics on the Cartesian product graph can be described by the canonical equations as the Kuramoto model. We show that the order parameter of the Cartesian product is the product of the order parameters of the factors. On the product graph, we observe either continuous or discontinuous synchronization transitions. In addition, under certain conditions, the transition from an initially incoherent state to a coherent one is discontinuous, while the transition from a coherent state to an incoherent one is continuous, presenting a mixture state of first and second order synchronization transitions. Our numerical results are in a good agreement with the theoretical predictions. These results provide new insight for network design and synchronization control.

Loading...
Thumbnail Image
Item

Is there an impact of small phase lags in the Kuramoto model?

2016, Omelchenko, Oleh, Wolfrum, Matthias

We discuss the influence of small phase lags on the synchronization transitions in the Kuramoto model for a large inhomogeneous population of globally coupled phase oscillators. Without a phase lag, all unimodal distributions of the natural frequencies give rise to a classical synchronization scenario, where above the onset of synchrony at the Kuramoto threshold there is an increasing synchrony for increasing coupling strength. We show that already for arbitrarily small phase lags there are certain unimodal distributions of natural frequencies such that for increasing coupling strength synchrony may decrease and even complete incoherence may regain stability. Moreover, our example allows a qualitative understanding of the mechanism for such non-universal synchronization transitions

Loading...
Thumbnail Image
Item

Fully solvable lower dimensional dynamics of Cartesian product of Kuramoto models

2019, Chen, Zewen, Zou, Yong, Guan, Shuguang, Liu, Zonghua, Kurths, Jürgen

Implementing a positive correlation between the natural frequencies of nodes and their connectivity on a single star graph leads to a pronounced explosive transition to synchronization, additionally presenting hysteresis behavior. From the viewpoint of network connectivity, a star has been considered as a building motif to generate a big graph by graph operations. On the other hand, we propose to construct complex synchronization dynamics by applying the Cartesian product of two Kuramoto models on two star networks. On the product model, the lower dimensional equations describing the ensemble dynamics in terms of collective order parameters are fully solved by the Watanabe-Strogatz method. Different graph parameter choices lead to three different interacting scenarios of the hysteresis areas of two individual factor graphs, which further change the basins of attraction of multiple fixed points. Furthermore, we obtain coupling regimes where cluster synchronization states are often present on the product graph and the number of clusters is fully controlled. More specifically, oscillators on one star graph are synchronized while those on the other star are not synchronized, which induces clustered state on the product model. The numerical results agree perfectly with the theoretic predictions. © 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.

Loading...
Thumbnail Image
Item

Nonuniversal transitions to synchrony in the Sakaguchi-Kuramoto model

2012, Omel'chenko, Oleh, Wolfrum, Matthias

We investigate the transition to synchrony in a system of phase oscillators that are globally coupled with a phase lag (Sakaguchi-Kuramoto model). We show that for certain unimodal frequency distributions there appear unusual types of synchronization transitions, where synchrony can decay with increasing coupling, incoherence can regain stability for increasing coupling, or multistability between partially synchronized states and/or the incoherent state can appear. Our method is a bifurcation analysis based on a frequency dependent version of the Ott-Antonsen method and allows for a universal description of possible synchronization transition scenarios for any given distribution of natural frequencies. ...